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Starting Point for Generating Wavelet Banks: A
Perfect-Reconstruction Two-Channel Filter Bank
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Figure 1. Two-channel filter bank.

• The above figure shows a two-channel filter bank consisting
of analysis and synthesis parts.

• The processing unit is omitted in the figure since this bank is
used as an intermediate step for generating a wavelet bank.

• The role of the analysis part is to split the overall signal into
lowpass and highpass parts using a lowpass−highpass filter
pair with transfer functions H0(z) and H1(z). These filtering
operations are followed by downsampling by a factor of
two.

• The role of the synthesis lowpass−highpass filter pair with
transfer functions F0(z) and F1(z) is to reconstruct the origi-
nal signal with a small delay. Before using these filters, the
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decimated outputs of H0(z) and H1(z) are upsampled by a
factor of two (one zero-valued sample is inserted between
the existing samples).

• A special case guaranteeing that ),()( Knxny −=  that is, the
output is the input delayed by K samples with K being odd,
is achieved by the following conditions:

1. ).(2)( 10 zHzF −=

2. ).(2)( 01 zHzF −−=

3. )()()( 10 zHzHzE −=  is the transfer function of a linear-
phase half-band FIR filter of order 2K.

• Conditions 1 and 2 guarantee that there is no aliasing at the
output.

• Condition 3 implies that  ( ) ( ) =−= zHzHzE 10)(

( )∑ =
−K

n
nzne2

0
 satisfies

1. e(2K − n) = e(n) for n=0,1 ,···, K.

2. e(K) = 1 / 2.

3. e(K ± 2r) = e(n) for r=1,2 ,···, (K − 1) / 2.

• Here, ( ) ( )∑ =
−= 1

0 11
N
n

nznhzH  and ( ) ( ) =−≡ zHzG 11

( )∑ =
−1

0 1
N
n

nzng are high-pass and low-pass filter transfer

functions with the impulse-response values being related via
g1(n)  = (−1)nh1(n) or h1(n) = (−1)ng1(n ) for n=0,1 ,···, N1.

• The corresponding frequency and amplitude responses are
related through G1(e jω ) = H1(e j(ω+π) ) or H1(e jω ) = 
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G1(e j(ω+π) ) ; and |G1(e jω )| =  |H1(e j(π −ω) )| or |H1(e jω )| = 
|G1(e j(π − ω) )|, respectively.
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Comments

• The overall design problem is to find E(z), the transfer func-
tion of a linear-phase half-band FIR filter being factorizable
into the terms H0(z) and H1(−z), such that H0(z), H1(z), F0(z),
and F1(z) provide the desired performance for the overall
system of Figure 1.

• Note that after determining H0(z) and H1(−z), H0(z), H1(z),
F0(z), and F1(z) are also uniquely determined.

• Before considering the desired performance, the next task is
to generate the discrete-time wavelet bank based on use of
the system of Figure 1.
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How to Generate Two-Level Wavelet Banks?

• When generating wavelet banks, the first step is use a two-
channel filter bank after the decimated lowpass filtered sig-
nal in the original filter bank shown in Figure 1.

• This bank is exactly the same as the original one, as shown
in Figure 2.
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                Figure 2. Two-level wavelet bank.

• The input-output relation for this bank is ( ) ( )Klvlw −= ,
showing that there is again a delay of K samples.

• Therefore, in order to make the system of Figure 2 perfect,
the decimated high-pass filtered signal, denoted by ( )ry1 ,
has also to be delayed by K samples.
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• Since these delays of K samples are between the down-
sampling and up-sampling by a factor of 2, the overall extra
delay in terms of the input and output sampling rates of the
overall system of Figure 2 is 2K samples.

• The overall delay is thus 3K samples and ( ) ( )Knxny 3−= .

• Using the identities considered in Part II of this course
(Pages 17 and 18), the overall system is expressible using
the equivalent structure also shown in Figure 2.
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How to Generate Multi-Level Wavelet Banks?

• In order to generate a multilevel wavelet bank, the last
decimated lowpass filtered signal of Figure 2 is treated in the
same manner.

• This process can be repeated several times. The number of
steps depends on the application.

• Figure 3 shows the structure for the analysis part in the case
where the band splitting has been performed five times.

•  This figure shows also the equivalent structure where the
input data is filtered by six filters followed by decimation by
different factors.

• Figure 4 shows the corresponding synthesis part.

• Finally, the overall system is depicted in Figure 5.

• In Figure 5, extra delays are included in order to make the
delays through all the branches the same and to generate a
perfect-reconstruction system.

• This is achieved when the delays of ( ) ( )zGzEz N
11

2 1− ,

( ) ( )zGzEz N
22

4 2− , ( ) ( )zGzEz N
33

8 3− , ( ) ( )zGzEz N
44

16 4− ,

( ) ( )zGzEz N
55

32 5− , and ( ) ( )zGzEz N
66

32 6−  are equal.

• When H0(z) and H1(−z), H0(z), H1(z), F0(z), and F1(z)  are
constructed according to the previous discussion, then

065 == NN , KN =4 , KN 33 = , KN 72 = , and .151 KN =

• In the wavelet bank of Figure 5, the signals denoted by
)(ryk  for k=1,2 ,· · ·, 6 are called the wavelet coefficients.
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• In the processing unit, these signals can be treated in several
ways depending on the applications. This produces the proc-
essed coeff icients ( )rykˆ . Typical example applications are
signal compression and de-noising.

• If the processed wavelet coeff icients satisfy ( ) ( )ryry kk =ˆ

for k=1,2 ,···, 6, then ( ) ( )Knxny 31−= , that is, the output
signal is the input signal delayed by 31K samples.

• The above procedure can be extended in a straightforward
manner to wavelet banks having more than 5 levels.
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Figure 3. Five-Level Wavelet Banks: Analysis Part.
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Figure 4. Five-Level Wavelet Bank: Synthesis Part.

S(z )

Synthesis bank

S(z )

S(z )

S(z )

S(z )

F0(z )

S(z )
F1(z )

2

2
+

G6(z ) = F0(z)F0(z2)F0(z4)F0(z8)F0(z16)32

G5(z ) = F0(z)F0(z2)F0(z4)F0(z8)F1(z16)32

G4(z ) = F0(z)F0(z2)F0(z4)F1(z8)16

G3(z ) = F0(z)F0(z2)F1(z4)8

G2(z ) = F0(z)F1(z2)4

G1(z ) = F1(z)2

Equivalent structure:

+
y(n)

y(n)

y6(n)

y1(r)

y5(r)

y4(r)

y3(r)

y2(r)

y6(n)

y1(r)

y5(r)

y4(r)

y3(r)

y2(r)

123
Figure 5. Overall Five-Level Wavelet Bank.
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Maximally-Flat Half-Band FIR Filters

• Mathematicians developing the theory for useful wavelet
banks found out that maximally-flat half-band FIR filters are
good starting points for developing proper discrete-time
wavelet banks.

• It should be pointed out that these filters are special cases of
maximally-flat FIR filters introduced by Herrmann already
in 1971.

• For a maximally-flat half-band filter of order 2K with
K = 2L − 1, the transfer function has the following closed-
form expression:

( ) ( ) ,
2

1
)(1

2
1

21
)1(

1

0

21 n
nL

L

n

n
L

z
znd

z
zE 




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

 −−



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

 +=
−

−−−
−

=

−

∑

   where

!!)1(
!)1(

)(
nL

nL
nd

−
+−=  .

• This linear-phase FIR filter has 2L zeros at z = −1 and
2(L − 1) zeros off the unit circle.

• We consider in more details the following two cases:

• Case A: L = 9 and 2K =34.

• Case B: L = 8 and 2K =30.
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Responses for Case A: L  ==  9 and 2K  ==  34

• The following three pages give the amplitude response, the
impulse response, and the zero-plot for Case A.

• In this case, )(zE  has 2L = 18 zeros at z = −1 and four zero
quadruplets at ( ) ( ) ( )kkkk jrjrz θθ ±±= exp1  ,exp  for

k=1,2 ,3 , 4.

• ,37196.01 =r  ,0.043571 πθ =  0.38943,2 =r  ,0.132392 πθ =
,0.430363 =r  ,0.227433 πθ =  0.51567,4 =r  .0.340014 πθ =
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Amplitude Response for Case A: L  ==  9 and 2K  ==  34
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Impulse Response for Case A: L  ==  9 and 2K  ==  34
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Zero-plot for Case A: L  ==  9 and 2K  ==  34
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• Note that because of an error in the MATLAB routine, all
the 9 zeros are not located at z = −1.
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Responses for Case B: L  ==  8 and 2K  ==  30

• The following three pages give the amplitude response, the
impulse response, and the zero-plot for Case B.

• In this case, )(zE  has 2L = 16 zeros at z = −1 and three zero
quadruplets at ( ) ( ) ( )kkkk jrjrz θθ ±±= exp1  ,exp  for

k=1,2 ,3  as well as one reciprocal zero pair at . 1 , RRz =

• ,0.376061 =r  ,0.099751 πθ =  0.41244,2 =r  ,0.205012 πθ =
,0.495573 =r  ,328023 πθ =  0.36540.=R
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Amplitude Response for Case B: L  ==  8 and 2K  ==  30
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Impulse Response for Case A: L  ==  8 and 2K  ==  30
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Zero-plot for Case A: L  ==  8 and 2K  ==  30
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• Note that because of an error in the MATLAB routine, all
the 8 zeros are not located at z = −1.
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Orthogonal ( Paraunitary) Wavelet Banks Derived
from Maximally-Flat Half-Band FIR Filters

• In this case,

  ( ) ( )∑
=

−=
0

0
00

N

n

nznhzH and ( ) ( )∑
=

−=−≡
1

0
111 )(

N

n

nzngzHzG

   satisfy

1. .1210 −=== LKNN

2. ( ) ( ) ( )∑ =
−=−= K

n
nznezHzHzE 2

010)(  is the transfer func-

tion of a linear-phase maximally-flat half-band FIR filter of
order 2K.

3. ( ) ( )nKhng −= 01  for  n=0,1 ,· · ·, K .

• Here, )(zE  can be factorized into minimum-phase and
maximum-phase terms ( )zH 0  and ( )zH −1  or mixed-phase
terms.

• This gives two types of solutions. In the second case, the
impulse responses of ( )zH 0  and ( )zH −1  are desired to
make rather linear.

• We start with the case where the terms are minimum- and
maximum-phase FIR filters.

• Then, the second case will be considered.
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Orthogonal Wavelet Banks Based on the Use of
Maximum-Phase and Minimum-Phase Components of a
Maximally-Flat Half-Band FIR

• In this case, both ( )zH 0  and ( )zH −1  contain L zeros z = −1,

whereas ( )zH 0  [ ( )zH −1 ] possesses the L −1 zeros of )(zE
lying inside (outside) the unit circle.

• The following set of pages shows various responses for the
five-level wavelet bank in Case A, that is, L = 9 and
2K = 34.

• They include the characteristics of the building-block two-
channel filter bank as well as the responses of the filters

( )zEk  and ( )zFk  for k=1,2 ,· · ·, 6 in the equivalent structure
of Figure 6.

• Also the analysis and synthesis scaling functions and wave-
lets, to be defined in more details in the end of this pile of
lecture notes, are shown.

• In drawing these responses, ( )zH 0 , ( )zH1 , ( )zF0 , and
( )zF1  have been normalized such that ( ) ( ) 111 00 == FH  and
( ) ( ) 111 11 =−=− FH . This means that the amplitude re-

sponses of ( )zH 0  and ( )zF0  [ ( )zH 0  and ( )zF0 ] take on the

value of unity at ω = 0 [ω = π].

• In the case of two-channel filter banks, the normalization
constant is 2 for ( )zF0  and ( )zF1 , due to the interpolation by
a factor of two.
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• Typically, for wavelet banks, the normalization constant is
2 for ( )zH 0 , ( )zH1 , ( )zF0 , and ( )zF1  although this re-

sults in overflows if f ixed-point arithmetic is used?

• It should be pointed out that the wavelets resulting using the
above procedure are called Daubechies wavelets.

• In the MATLAB Wavelet Toolbox manual, the wavelet cor-
responding to our case is denoted by db9 with 9 indicating
that L = 9.

• It is seen that the frequency selectivities provided by the
( )zEk ’ s and ( )zFk ’ s are very poor.

• This means that if the original wavelet coeff icients ( )ryk

and the processed coeff icients ( )rykˆ  are very different in
Figure 6, the aliased terms are not cancelled very well .

• However, this does not matter and is, in fact, beneficial i f we
are studying images or waveforms of one-dimensional sig-
nal. In this case, our eyes are the ‘referees’ .

• If our ears are the ‘referees’ , then we hate especially sinu-
soidal components jumping to a wrong frequency range.

• In this case, we need very selective filter banks.

• Therefore, there is a room for both multi rate wavelet banks
with poor selectivity and selective multi rate filter banks!

136
Zero Plots for H0((z)), H1((z)), F0((z)), and F1((z))
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Amplitude Responses  for H0((z)), H1((z)), F0((z)), and
F1((z)). F0((z)) [F1((z))] has been normalized such that it
achieves the value of unity at ωω  ==  00 [ ωω  ==  ππ].
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Impulse Responses  for H0((z)), H1((z)), F0((z)), and F1((z)).
F0((z)) [F1((z))] has been normalized such that it achieves
the value of unity at ωω  ==  00 [ ωω  ==  ππ].
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Amplitude Responses for the Resulting Six Analysis
Transfer Functions Ek((z)) in Figures 3 and 5
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Amplitude Responses for the Resulting Six Synthesis
Transfer Functions Gk((z)) in Figures 4 and 5
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Impulse Responses for the Resulting Six Analysis
Transfer Functions Ek((z)) in Figures 3 and 5
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Impulse Responses for the Resulting Six Synthesis
transfer functions Gk((z)) in Figures 4 and 5
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Analysis Scaling Function and Wavelet after 5
Iterations
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Synthesis Scaling Function and Wavelet after 5
Iterations
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Orthogonal Wavelet Banks Based on the Use of
Mixed-Phase Components of a Maximally-Flat Half-
Band FIR

• In this case, both ( )zH 0  and ( )zH −1  again contain L zeros

z = −1. In order to make the impulse responses rather linear
in both the analysis and synthesis banks, ( )zH 0  and ( )zH −1

are selected to be mixed-phase designs.

• In Case A (L = 9 and 2K =34), a good result is obtained by
selecting ( )zH 0  [ ( )zH −1 ] to contain the zeros at

)exp( 11 θjrz ±= , )exp()/1( 22 θjrz ±= , )exp( 33 θjrz ±= ,
and )exp()/1( 44 θjrz ±=  [ )exp()/1( 11 θjrz ±= , =z

)exp( 22 θjr ± , )exp()/1( 33 θjrz ±= , and )exp( 44 θjrz ±= ].

• Here the zero quadruplets have been sorted according to the
increasing angle θ.

• In Case B (L = 8 and 2K =30), a good result is obtained by
selecting ( )zH 0  [ ( )zH −1 ] to contain the zeros at

)exp()/1( 11 θjrz ±= , )exp( 22 θjrz ±= , and
)exp()/1( 33 θjrz ±=  [ )exp( 11 θjrz ±= ,
)exp()/1( 22 θjrz ±= , )exp( 33 θjrz ±= ].

• The following set of pages shows the resulting responses for
the five-level wavelet bank in Case A.

• The corresponding wavelets are called symlets.

• In the MATLAB Wavelet Toolbox manual, the wavelet cor-
responding to our case is denoted by sym9 with 9 indicating
that L = 9.
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Zero Plots for H0((z)), H1((z)), F0((z)), and F1((z))
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Amplitude Responses  for H0((z)), H1((z)), F0((z)), and
F1((z)). F0((z)) [F1((z))] has been normalized such that it
achieves the value of unity at ωω  ==  00 [ ωω  ==  ππ].
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Impulse Responses  for H0((z)), H1((z)), F0((z)), and F1((z)).
F0((z)) [F1((z))] has been normalized such that it achieves
the value of unity at ωω  ==  00 [ ωω  ==  ππ].
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Amplitude Responses for the Resulting Six Analysis
Transfer Functions Ek((z)) in Figures 3 and 5
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Amplitude Responses for the Resulting Six Synthesis
Transfer Functions Gk((z)) in Figures 4 and 5
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Impulse Responses for the Resulting Six Analysis
Transfer Functions Ek((z)) in Figures 3 and 5
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Impulse Responses for the resulting six synthesis
transfer functions Gk((z)) in Figures 4 and 5
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Analysis Scaling Function and Wavelet after 5
Iterations
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Synthesis Scaling Function and Wavelet after 5
Iterations
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Biorthogonal Wavelet Banks Based on Factorizing a
Maximally-Flat Half-Band FIR into Linear-Phase
FIR Components.

• In this case it is desired that both components ( )zH 0  and
( )zH −1  are linear-phase FIR filters.

• There are several ways of sharing the zeros of a maximally-
flat half-band filter between ( )zH 0  and ( )zH −1 . All what is
needed is that ( )zH 0  and ( )zH −1  contain the overall quad-
ruplet or a reciprocal zero pair on the real axis.

• Otherwise, the factorization can be performed arbitrarily.
For instance, the zeros z = −1 can be arbitrarily shared be-
tween ( )zH 0  and ( )zH −1 .

• A good result in Case A is obtained by forming ( )zH 0  to

contain 8 zeros at z = −1 and the first and fourth quadruplets.

• Correspondingly, ( )zH −1  contains 10 zeros at z = −1and the
second and third quadruplets.

• The following set of pages shows the responses for the re-
sulting five-level wavelet bank.
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Zero Plots for H0((z)), H1((z)), F0((z)), and F1((z))
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Amplitude Responses  for H0((z)), H1((z)), F0((z)), and
F1((z)). F0((z)) [F1((z))] has been normalized such that it
achieves the value of unity at ωω  ==  00 [ ωω  ==  ππ].
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Impulse Responses  for H0((z)), H1((z)), F0((z)), and F1((z)).
F0((z)) [F1((z))] has been normalized such that it achieves
the value of unity at ωω  ==  00 [ ωω  ==  ππ].
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Amplitude Responses for the Resulting Six Analysis
Transfer Functions Ek((z)) in Figures 3 and 5
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Amplitude Responses for the Resulting Six Synthesis
Transfer Functions Gk((z)) in Figures 4 and 5
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Impulse Responses the Resulting Six Analysis
Transfer Functions Ek((z)) in Figures 3 and 5
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Impulse Responses for Resulting Six Synthesis
Transfer Functions Gk((z)) in Figures 4 and 5
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Analysis Scaling Function and Wavelet after 5
Iterations
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Synthesis Scaling Function and Wavelet after 5
Iterations
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Generalized Orthogonal Wavelet Banks

• In the above, we considered the case where the starting-
point half-band maximally-flat FIR filter with transfer func-
tion =)(zE  ( ) ( )zHzH −10  had 2L zeros at z = −1 and

2(L − 1) zeros off the unit circle.

• In this case, the filter order is 2K with K = 2L −1.

• In the most general case of orthogonal wavelet banks, our
starting-point half-band filter can have M double zero pairs
on the unit circle and 2(L −2M) zeros at z = −1.

• This is because in the orthogonal case the zeros on the unit
circle must be the same for both ( )zH 0  and ( )zH −1 .

• After fixing the zeros on the unit circle, the  2(L − 1) zeros
off the unit circle zeros off the unit circle can be determined
in a straightforward manner in such a way that the overall
transfer function =)(zE  ( ) ( )zHzH −10  becomes that of a
half-band filter.

• The author of these lecture notes has generated a MATLAB
file for this purpose (not well commented, but available).

• The following set of pages shows the responses for an ap-
proximately symmetric five-level wavelet bank in the case
where M = 1 and L = 9.

• The number of zeros at z = −1 is 7 and the double zero pair
on the unit is located at )728.0exp( πjz ±= .

• When comparing the filter responses to the earlier case
where there were no zeros on the unit circle outside the point

166
z = −1, it is observed that the zero pair on the unit circle im-
proves the frequency selectivities of the filters in the bank.

• If more zeros are moved from the point z = −1, then the se-
lectivities can be further improved.

• However, the smoothness of the impulse responses becomes
worse.

• It should be emphasized that the smoothness of the impulse
responses of the filters in the wavelet banks is very crucial in
many applications.
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Zero Plots for H0((z)), H1((z)), F0((z)), and F1((z))

−1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

Zeros for H
0
(z)

17

−2 −1 0 1
−1.5

−1

−0.5

0

0.5

1

1.5

Zeros for H
1
(z)

17

−1 0 1 2
−1.5

−1

−0.5

0

0.5

1

1.5

Zeros for F
0
(z)

17

−2 −1 0 1

−1.5

−1

−0.5

0

0.5

1

1.5

Zeros for F
1
(z)

17

168
Amplitude Responses  for H0((z)), H1((z)), F0((z)), and
F1((z)). F0((z)) [F1((z))] has been normalized such that it
achieves the value of unity at ωω  ==  00 [ ωω  ==  ππ].
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Impulse Responses  for H0((z)), H1((z)), F0((z)), and F1((z)).
F0((z)) [F1((z))] has been normalized such that it achieves
the value of unity at ωω  ==  00 [ ωω  ==  ππ].
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Amplitude Responses for the Resulting Six Analysis
Transfer Functions Ek((z)) in Figures 3 and 5
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Amplitude Responses for the Resulting Six Synthesis
Transfer Functions Gk((z)) in Figures 4 and 5
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Impulse Responses for the Resulting Six Analysis
Transfer Functions Ek((z)) in Figures 3 and 5
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Impulse Responses for the Resulting Six Synthesis
Transfer Functions Gk((z)) in Figures 4 and 5
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Analysis Scaling Function and Wavelet after 5
Iterations
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Synthesis Scaling Function and Wavelet after 5
Iterations
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Generalized Biorthogonal Wavelet Banks

• In this case, both ( )zH 0  and ( )zH −1  may have their own
zero pairs on the unit circle.

• The following set of pages show responses in the biorthogo-
nal case considered above with the exception that now two
zeros of both ( )zH 0  and ( )zH −1  have been moved from

z = −1 to a zero pair at )726.0exp( πjz ±= .

• The resulting ( )zH 0  and ( )zH −1  have now 6 and 8 zeros at

z = −1, respectively.

• When comparing the filter responses to the earlier case, it is
again observed that the frequency selectivities are increased.
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Zero Plots for H0((z)), H1((z)), F0((z)), and F1((z))
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Amplitude Responses  for H0((z)), H1((z)), F0((z)), and
F1((z)). F0((z)) [F1((z))] has been normalized such that it
achieves the value of unity at ωω  ==  00 [ ωω  ==  ππ].
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Impulse Responses  for H0((z)), H1((z)), F0((z)), and F1((z)).
F0((z)) [F1((z))] has been normalized such that it achieves
the value of unity at ωω  ==  00 [ ωω  ==  ππ].
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Amplitude Responses for the Resulting Six Analysis
Transfer Functions Ek((z)) in Figures 3 and 5
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Amplitude Responses for the Resulting Six Synthesis
Transfer Functions Gk((z)) in Figures 4 and 5
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Impulse Responses for Resulting Six Analysis
Transfer Functions Ek((z)) in Figures 3 and 5
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Impulse Responses for the Resulting Six Synthesis
Transfer Functions Gk((z)) in Figures 4 and 5
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Analysis Scaling Function and Wavelet after 5
Iterations
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Synthesis Scaling Function and Wavelet after 5
Iterations
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How to Measure the “ Goodness” of a Wavelet  Bank

• There exist several factors being crucial for the applicability
of a wavelet bank. These include:

I . Lengths of the impulse responses.
• It is desired to keep the orders of ( )zH 0  and ( )zH1  as

small as possible to still provide the required perform-
ance for the overall wavelet bank.

II . Phase linearity.
• In many applications, it is desired that ( )zH 0  and ( )zH1

are linear-phase or approximately linear-phase FIR fil-
ters.

III . Number of vanishing moments.
• This number is N if ( )zH1  has N zeros at z = −1.

• Polynomial signals of order less than or equal to N − 1
are filtered out by the ( )zH1 ’s in the wavelet bank and
passed trough the ( )zH 0 ’s.

IV. Regularity or smoothness.
• In order to give the definitions, we form the following

transfer functions:

( ) ( ) ( ) ( ),2)(
12 2

0
2

0
2

00
)( −−

=
ii

zHzHzHzHzA ii
�

( ) ( ) ( ) ( ),2)(
12 2

1
2

0
2

00
)( −−

=
ii

zHzHzHzHzB ii
�

( ) ( ) ( ) ( ),2)(
12 2

0
2

0
2

00
)( −−

=
ii

zFzFzFzFzC ii
�

       and
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( ) ( ) ( ) ( ).2)(
12 2

1
2

0
2

00
)( −−

=
ii

zFzFzFzFzD ii
�

• Here, it is assumed that ( )zH 0  and ( )zF0  [ ( )zH1  and
( )zF1 ] have been normalized to achieve the value of

unity at z = −1 [z = 1].
• From the above transfer functions we can generate the

following continuous-time analysis wavelet and scaling
function:

))12((lim)(                     )( −=
∞→

ii

i
tatψ

))12((lim)(                      )( −=
∞→

ii

i
tatφ  ,

where )()( na i  and )()( nb i  are the impulse-response coef-

ficients of  )()( zA i  and )()( zB i , respectively.

• Similarly, the synthesis wavelet and scaling function can
be generated as follows:

))12((lim)(ˆ                     )( −=
∞→

ii

i
tctψ

))12((lim)(ˆ                      )( −=
∞→

ii

i
tdtφ  ,

where )()( nc i  and )()( nd i  are the impulse-response coef-

ficients of  )()( zC i  and )()( zD i , respectively.

• Regularity is the number of continuous derivatives of the
above functions.

• The above impulse responses have been formed in such a
way that as i increases ))12(()( −ii ta  is all the time non-
zero in the same interval and we are getting more points
for )(tψ in this interval without changing its shape. The
same is true for the other impulse responses and func-
tions.
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• In connection of generating five-level wavelet banks

previously, we gave the analysis and synthesis wavelets
and scaling functions after five iterations (i = 5).

• In the most general case, the regularity of the above
functions, denoted by s, is not an integer. Let m be an
integer such that m < s < m +1. Then, the function )(tψ
has a regularity of s if the mth derivative of )(tψ  resem-

bles mstt −− 0  at each point 0tt =  in the interval where
)(tψ  is nonzero.

V. Frequency selectivity
• Typically, the selectivity of the filters in the wavelet

bank is very poor. This is because wavelet banks are
normally used more or less in preserving the waveform
of a one- or two-dimensional signal.

• Images are typical cases. We are looking at images and
our eyes are the referees of the quality. In audio applica-
tions, in turn, the frequency-domain behavior of the filter
bank is of great importance as your ears are the referees
of the quality.

VI.  Number of levels
• This depends on the application. Typically three to five

levels is a good selection.

• The above-mentioned measures are very conflicting.

• The selection of a proper wavelet bank depends strongly on
the application.

• Hopefully, the MATLAB Wavelet Toolbox manual  helps
us.
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• It should be also pointed out that in the case of  biorthogonal
wavelets the analysis and synthesis parts may be very differ-
ent in order to achieve a satisfactory overall performance.

• For biorthogonal wavelets, the selectivity of the analysis part
and the smoothness of the synthesis part are of great impor-
tance.

• There are also available very useful pseudo wavelets. If you
are interested in them, contact the lecturer, e-mail:
ts@cs.tut.fi.

• There are also several MATLAB files (all the designs and
plots lecture notes have been generated by own files).
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Some Comments

• In the above, we considered only some starting-point two-
channel filter banks for generating multilevel wavelet banks.

• Furthermore, we concentrated only on FIR wavelet banks,
although there are also IIR wavelet banks.

• We generated our banks by further processing the lowpass
filtered and decimated signal.

• In the most general case, some of the highpass filtered and
decimated signals are processed by the basic building-block
two-channel filter bank, yielding the so-called wavelet
packet.

• The extreme case is the tree-structured filter bank generated
by using the same building-block two-channel filter bank.
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Part V.F: Octave Filter Banks

• The multilevel wavelet banks generated in Part V.E are ex-
amples of octave filter banks, although their frequency se-
lectivity is very poor.

• However, we can mimic the same procedure with the excep-
tion that now also IIR two-channel filter banks are under
consideration.

•  Hence, given a two-channel filter bank with analysis filter
transfer functions H0(z) and H1(z) and the synthesis filter
transfer functions F0(z) and F1(z), the analysis and synthesis
filter can be generated in the five-level case as shown in
Figures 1 and 2.

• Figure 3 shows the overall filter bank.

• If for the building-block two-channel filter bank , the input-
output transfer function is T(z) an allpass filter, like in the
case of two-channel IIR filters built using half-band IIR fil-
ters (Part V.B), then for the overall system, the input-output
transfer function becomes in the case of Figure 3

 ( )l

l
ove zTzT 25

0
)( Π

=
=

    if 1)()( 56 == zCzC , ),()(4 zTzC = ),()()( 2
3 zTzTzC =

),()()()(    42
2 zTzTzTzC =  and ( ).)( 24

01
l

l zTzC Π ==
• In the case of a perfect-reconstruction two-channel filter

bank with T(z) = z−K, Tove(z) = z−31K, C6(z) = C5(z) =1,
C4(z) = z−K, C3(z) = z−3K, C2(z) = z−7K, and C1(z) = z−15K.
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Figure 1. Five-Level Octave Filter Bank: Analysis
Part.
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Figure 2. Five-Level Octave Filter Bank: Synthesis
Part.
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Figure 3. Overall Five-Level Octave Filter Bank.
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Example 1: Five-Level FIR Octave Filter Bank

• It is desired to build a five-level FIR filter bank using the
minimax orthogonal perfect-reconstruction two-channel fil-
ter bank considered on Pages 51 and 52 in this part of lec-
ture notes.

• Figure 4 shows the amplitude responses for the )(zEk ’s and
)(zGk ’s (see Figures 1,2,and 3).

• The amplitude responses for the )(zGk ’s have been no r-
malized such that their maximum value is equal to unity
.The actual responses are obtained by multiplying the am-
plitude responses by the corresponding interpolation factor.

• Figures 5 and 6 show the corresponding impulse responses
for the )(zEk ’s and )(zGk ’s. In this case, no normalization
has been performed.
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Figure 4. Amplitude Responses for the Analysis and
Synthesis Filters in an Example Five-Level Octave
FIR Filter Bank.
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Figure 5. Impulse Responses for the Analysis Filters
in an Example Five-Level Octave FIR Filter Bank.
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Figure 6. Impulse Responses for the Synthesis Filters
in an Example Five-Level Octave FIR Filter Bank.
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Example 2: Five-Level IIR Octave Filter Bank

• It is desired to build a five-level IIR filter bank using the
two-channel IIR filter bank considered on Pages 91−94 in
this part of lecture notes.

• Figure 7 shows the amplitude responses for the )(zEk ’s and
)(zGk ’s (see Figures 1,2,and 3).

• The amplitude responses for the )(zGk ’s have again been
normalized such that their maximum value is equal to unity.

• In this case, the amplitude response for the input-output
transfer function is equal to unity at all frequencies, but there
is a phase distortion.
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Figure 7. Amplitude Responses for the Analysis and
Synthesis Filters in an Example Five-Level Octave
IIR Filter Bank.
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