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Starting Point for Generating Wavelet Banks: A
Perfect-Reconstruction Two-Channel Filter Bank

Analy5|s bank Synthe3|s bank

A
Ho(z), Fo(z)/2 H1(z),F1(2)/2

fgl4 fg/2

Figure 1. Two-channel filter bank.

* The above figure shows a two-channel filter bank consisting
of analysis and synthesis parts.

* The processing unit is omitted in the figure since this bank is
used as an intermediate step for generating a wavelet bank.

* Therole of the analysis part isto split the overall signal into
lowpass and highpass parts using a lowpass—highpass filter
pair with transfer functions Hy(2) and H1(2). These filtering
operations are followed by downsampling by a factor of
two.

* Therole of the synthesis |lowpass—-highpass filter pair with

transfer functions Fq(2) and F(2) is to reconstruct the origi-
nal signal with asmall delay. Before using these filters, the
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dedmated ouputs of Hy(z) and Hy(2) are upsampled by a
fador of two (one zeo-valued sampleisinserted between
the eisting samples).

* A spedal cese guarantedngthat y(n) = x(n—K), that is, the
output isthe inpu delayed by K samples with K being odd
isadieved by the foll owing condtions:

1. Fy(2) =2H,(-2).

2.F(2) =-2H,(-2).

3. E(2) = Hy(2)H,(-2) isthetransfer function o alinea-
phase half-band FIR filter of order 2K.

* Condtions 1 and 2 garanteethat thereisno aliasing at the
outpu.

* Condtion 3impliesthat E(2) =H,(z)H,(-2)=
Zifoe(n)z"” satisfies

1.e(2K = n) =¢(n) for n=0,1,- -, K.
2.¢K)=1/2.
3.eKzx2r)=¢en)forr=1,2,--,(K-1)/2.

* Here, H,(2)= z:io (n)z™ and G,(z)=H,(-2)=
ZE‘;O g,(n)z™" are high-passand low-passfilter transfer
functions with the impulse-resporse values being related via
0u(n) = (=1)"ny(n) or hy(n) = (-1)"gy(n ) for n=0,1,- -, Ny.

* The orrespondng frequency and amplitude responses are
related throughG,(e!?) = H,(e!“™) or H,(e!?) =
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Gy(e@™) ; and [Gy(e'?)| = Hu(e'™™)| or [Hy(e'?)| =
G1(e'™ )], respectively.
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Comments

* The overall design problem isto find E(2), the transfer func-
tion of alinear-phase half-band FIR filter being factorizable
into the terms Hy(2) and H(—2), such that Hy(2), H1(2), Fo(2),
and F(2) provide the desired performance for the overall
system of Figure 1.

* Note that after determining Ho(2) and Hy(-2), Ho(2), H1(2),
Fo(2), and F1(2) are also uniquely determined.

* Before considering the desired performance, the next task is
to generate the discrete-time wavel et bank based on use of
the system of Figure 1.
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How to Gener ate Two-L evel Wavelet Banks?

* When generating wavelet banks, the first step is use atwo-
channdl filter bank after the decimated lowpass filtered sig-
nal in the original filter bank shown in Figure 1.

» This bank is exactly the same as the original one, as shown
in Figure 2.

VO elHo@)b ¥ 2 EY A2 P Fo@)[ yw(
B e Sl
3

12 y1(r) @ %

Equivalent structure:

Figure 2. Two-level wavelet bank.
* The input-output relation for this bank is w(l ) = v(I - K),
showing that there is again adelay of K samples.
* Therefore, in order to make the system of Figure 2 perfect,
the decimated high-pass filtered signal, denoted by v, (r),
has also to be delayed by K samples.
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* Since these delays of K samples are between the down-
sampling and up-sampling by afactor of 2, the overall extra
delay in terms of the input and output sampling rates of the
overall system of Figure 2 is 2K samples.

* The overall delay isthus 3K samplesand y(n) = x(n-3K).

¢ Using the identities considered in Part 11 of this course
(Pages 17 and 18), the overall systemis expressible using
the equivalent structure aso shown in Figure 2.
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How to Generate M ulti-L evel Wavelet Banks?

* |n order to generate a multilevel wavelet bank, the last
decimated lowpass filtered signal of Figure 2 istreated in the
same manner.

* This process can be repeated several times. The number of
steps depends on the application.

* Figure 3 shows the structure for the analysis part in the case
where the band splitting has been performed five times.

¢ Thisfigure shows also the equivaent structure where the
input dataisfiltered by six filters followed by decimation by
different factors.

* Figure 4 shows the corresponding synthesis part.
* Finally, the overal systemisdepicted in Figure 5.

* In Figure 5, extra delays are included in order to make the
delays through all the branches the same and to generate a
perfect-reconstruction system.

* Thisis achieved when the delays of z"2ME,(2)G,(2),
N E, (Z)Gz (2), 7N Es(2)Gs(2), 7o E, (Z)G4 (2).
773N E(2)Gs(2), and z2732Me E4(2)Gg (2) are equal.

* When Ho(2) and Hy(-2), Ho(2), Hi(2), Fo(2), and F4(2) are
constructed according to the previous discussion, then
N5 =Ng =0, N, =K, N3 =3K, N, =7K, and N; =15K.

* In the wavelet bank of Figure 5, the signals denoted by
Y (r) fork=1,2,---, 6 are called the wavelet coefficients.

12C

* In the processng urit, these signals can be treaed in several
ways depending onthe goplicaions. This produces the proc-
es=d coefficients ¥, (r). Typicd example gplicaions are
signal compresson and de-noising.

* If the processed wavelet coefficients stisfy 9, (r) =y, (r)
fork=1,2, -, 6, then y(n) = x(n-31K), that is, the output
signal istheinpu signal delayed by 31K samples.

* The &ove procedure can be extended in a straightforward
manner to wavelet banks having more than 5levels.
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Figure 3. Five-L evel Wavelet Banks: Analysis Part.
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Figure 4. Five-L evel Wavelet Bank: Synthesis Part.
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Figure 5. Overall Five-L evel Wavelet Bank.
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M aximally-Flat Half-Band FIR Filters

* Mathematicians devel oping the theory for useful wavelet
banks found out that maximally-flat half-band FIR filters are
good starting points for developing proper discrete-time
wavelet banks.

* |t should be pointed out that these filters are special cases of
maximally-flat FIR filtersintroduced by Herrmann already
in1971.

* For amaximally-flat half-band filter of order 2K with
K =2L - 1, the transfer function has the following closed-
form expression:

arftia __apgn
e)- 278 Seapamzen 2T
02 0 & 02 0
where
d(n):w.
(L-D'n!

¢ Thislinear-phase FIR filter has 2L zerosat z= -1 and
2(L — 1) zeros off the unit circle.

* We consider in more details the following two cases:
* CaseA: L =9and 2K =34.
* CaseB: L =8and 2K =30.




Responsesfor Case A: L =9and 2K =34
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* The following three pages give the amplitude response, the

impulse response, and the zero-plot for Case A.
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Amplitude Responsefor Case A: L =9and 2K =34

Maximally—Flat Half-Band FIR Filter with L = 9 and 2K = 34

O ! ! ! ! ! ! ! ! 4
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Impulse Responsefor Case A: L =9and 2K =34

Maximally—Flat Half-Band FIR Filter with L = 9 and 2K = 34
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Zero-plot for CaseA: L =9and 2K =34
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» Note that because of an error in the MATLAB routine, all
the 9 zeros are not located at z= —1.
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Responsesfor CaseB: L =8 and 2K =30

* The following three pages give the amplitude response, the
impul se response, and the zero-plot for Case B.

¢ Inthiscase, E(z) has2L = 16 zeros at z= -1 and three zero
quadruplets at z=r, exp(x j6, ), (r, )exp(x j6, ) for
k=1,2,3 aswell as onereciprocal zero pair at z= R,1/R.

* r, =0.37606, 6, = 0.099757, 1, = 0.41244, 6, = 0.205017,
ry = 0.49557, 6, = 3280217, R = 0.36540.
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Amplitude Responsefor CaseB: L =8 and 2K =30

Maximally—Flat Half-Band FIR Filter with L = 8 and 2K = 30
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Impulse Responsefor Case A: L =8 and 2K =30

Maximally—Flat Half-Band FIR Filter with L = 8 and 2K = 30
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Zero-plot for Case A: L =8and 2K =30

Maximally-Flat Half-Band FIR Filter with L = 8 and K = 30
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» Note that because of an error in the MATLAB routine, all
the 8 zeros are not located at z=—1.
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Orthogonal ( Paraunitary) Wavelet Banks Derived
from Maximally-Flat Half-Band FIR Filters

* Inthis case,
No Ny
Ho(2)=3 ho(n)z"and Gy(2) =H,(-2)=  gy(n)z™"
n=0 n=0
satisfy
1.Ng=N, =K =2L-1,
2.E(2) =Ho(2)H,(-2)= Zﬁfoe(n)z‘” is the transfer func-

tion of alinear-phase maximally-flat half-band FIR filter of
order 2K.

3.9,(n)=hy(K -n) for n=0,1,--- K.

* Here, E(2) can be factorized into minimum-phase and
maximum-phase terms H ,(z) and H, (- z) or mixed-phase
terms.

* This givestwo types of solutions. In the second case, the
impulse responses of H(z) and H, (- z) are desired to
make rather linear.

¢ \We start with the case where the terms are minimum- and
maximum-phase FIR filters.

¢ Then, the second case will be considered.
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Orthogonal Wavelet Banks Based on the Use of

M aximum-Phase and Minimum-Phase Components of a

M aximally-Flat Half-Band FIR

* In this case, both H,(z) and H, (- z) contain L zerosz= -1,
whereas H,(z) [H, (- z)] possessesthe L -1 zeros of E(z)
lying inside (outside) the unit circle.

* Thefollowing set of pages shows various responses for the
five-level wavelet bank in Case A, that is, L =9 and
2K = 34.

* They include the characteristics of the building-block two-
channel filter bank as well as the responses of the filters
E, (z) and F, (2) for k=1,2,---, 6 in the equivalent structure
of Figure 6.

* Also the analysis and synthesis scaling functions and wave-

lets, to be defined in more details in the end of this pile of
lecture notes, are shown.

* In drawing these responses, H,(z), H,(z), Fy(z), and
F, (z) have been normalized such that H (1) = F,(1) =1 and
H,(-1) = F,(-1) =1. This means that the amplitude re-
sponses of H(z) and Fy(z) [H,(z) and Fy(z)] take on the
value of unity at w=0[w=T11.

* |n the case of two-channel filter banks, the normalization
constant is 2 for Fy(z) and F,(z), due to the interpolation by
afactor of two.
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* Typicdly, for wavelet banks, the normalization constant is
V2 for Hy(2), H,(2), Fo(2), and F,(z) athoughthis re-
sultsin overflowsif fixed-point arithmetic is used?

* |t shoud be pointed ou that the wavelets resulting wsing the
abowe procedure are cdl ed Daubedies wavelets.

¢ Inthe MATLAB Wavelet Todbox manual, the wavelet cor-
respondngto ou caseis denoted by db9with 9indicating
that L = 9.

* It is e that the frequency seledivities provided by the
E, (z) sand F, (z)'sare very poa.

* This means that if the original wavelet coefficients y, (r)
and the processed coefficients 9, (r) are very different in
Figure 6, the diased terms are not cancdled very well.

* However, this does not matter and s, in fad, beneficial if we
are studying images or waveforms of one-dimensional sig-
nal. In this case, our eyes are the ‘referees’.

* If our easarethe ‘referees’, then we hate espedally sinu-
soidal comporents jJumping to awrong frequency range.

* In this case, we neal very seledivefilter banks.

* Therefore, thereisaroom for both multirate wavel et banks
with poa seledivity and seledive multirate filter banks!
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Zero Plotsfor Ho(2), Hi(2), Fo(2), and Fi(2)
Zeros for HO(Z) Zeros for H l(z)
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Amplitude Responses for Ho(2), H1(2), Fo(2), and
F1(2). Fo(2) [F1(2)] has been normalized such that it
achievesthe value of unity at w=0[ w=T11.

Ho(z): lowpass filter, Hl(z): highpass filter
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I mpulse Responses for Ho(2), H1(2), Fo(2), and F1(2).

Fo(2) [F1(2)] has been normalized such that it achieves

thevalue of unity at w=0[ w=rm.

Impulse responses
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Amplitude Responses for the Resulting Six Analysis
Transfer Functions Ex(2) in Figures3 and 5
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Amplitude Responses for the Resulting Six Synthesis

Transfer Functions Gy(2) in Figures4 and 5
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I mpulse Responses for the Resulting Six Analysis

Transfer Functions Ex(2) in Figures3 and 5

Impulse responses
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| mpulse Responses for the Resulting Six Synthesis

transfer functions Gy (2) in Figures4 and 5

Impulse responses
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Analysis Scaling Function and Wavelet after 5

| ter ations

Analysis scaling function after 5 iterations
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Synthesis Scaling Function and Wavelet after 5

Iterations

Synthesis

scaling function after 5 iterations
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Orthogonal Wavelet Banks Based on the Use of Zero Plotsfor Ho(2), Hi(2), Fo(2), and F1(2)

Mixed-Phase Components of a Maximally-Flat Half-

w Zeros for HO(Z) Zeros for Hl(z)

* In this case, both H,(z) and H, (- z) again contain L zeros L5f o] | ©
z=-1. In order to make the impul se responses rather linear 0:: ST © 1 O_;f o |
in both the analysis and synthesis banks, H(z) and H, (- z) o6 ;% : | oL 047 ol
are selected to be mixed-phase designs. -05F B ] 050 % i

* InCase A (L =9 and 2K =34), agood result is obtained by el : ° ] i ' ]
selecting H(z) [H, (- )] to contain the zeros at g e
Z=1n eXp(i ] 91) 2= (1/ r2) eXp(i J 92) y Z=1T3 eXp(i J 63)1 Zeros for Fo(z) Zeros for Fl(z)
and z=(1/r,)exp(t 6,) [2= A/ r) exp(t6)),2= Lo o SR ,
r, exp(£j6,), z=(1/r3)exp(xj6;), and z=r, exp(£j6,)]. o ‘ 1 it © 1

* Here the zero quadruplets have been sorted according to the 0'2 o ;1% : o] 0'2: %;y o
increasing angle 6. osf . O - o] -osf DA

* In Case B (L = 8 and 2K =30), agood result is obtained by A il _;: © o 1
selecting H,(z) [H, (- 2)] to contain the zeros at B Er a— o
z=(Ur)exp(xj6;), z=rexp(*6,), and
z=(1/r3)exp(+]6;) [z=r,exp(x|6,),
z=(1/ry)exp(+6,), z=rzexp(j63)].

* The following set of pages shows the resulting responses for
the five-level wavelet bank in Case A.

* The corresponding wavelets are called symlets.

* Inthe MATLAB Wavelet Toolbox manual, the wavelet cor-
responding to our case is denoted by sym9 with 9 indicating
that L =9.
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Amplitude Responses for Ho(2), Hi(2), Fy(2), and
F1(2). Fo(2) [F1(2)] has been nor malized such that it
achievesthe value of unity at w=0[ w=T11.

Ho(z): lowpass filter, Hl(z): highpass filter
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Impulse Responses for Ho(2), Hi(2), Fo(2), and F1(2).
Fo(2) [F1(2)] has been normalized such that it achieves
thevalue of unity at w=0[ w=T11.
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Amplitude Responses for the Resulting Six Analysis
Transfer Functions Ex(2) in Figures3 and 5
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Amplitude Responses for the Resulting Six Synthesis
Transfer Functions Gy(2) in Figures4 and 5
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I mpulse Responses for the Resulting Six Analysis
Transfer Functions Ex(2) in Figures3 and 5

Impulse responses
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I mpulse Responses for theresulting six synthesis
transfer functions Gy(2) in Figures4 and 5

Impulse responses
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Analysis Scaling Function and Wavelet after 5 Synthesis Scaling Function and Wavelet after 5
Iterations Iterations
Analysis scaling function after 5 iterations Synthesis scaling function after 5 iterations
2 4 6 Sﬁme 10 12 14 16 2 4 6 B[ime 10 12 14 16
Analysis wavelet after 5 iterations Synthesis wavelet after 5 iterations
ime 10 12 14 16 0 2 4 6 E}time 10 1‘2 14 16
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Biorthogonal Wavelet Banks Based on Factorizing a Zero Plotsfor Hy(2), Hi(2), Fo(2), and Fi(2)
Maximally-Flat Half-Band FIR into L inear-Phase
FIR Components. Zeros for HO(Z) Zeros for Hl(z)
* Inthis case it is desired that both components H ,(z) and 15 ° 1 "l © ]

H, (- z) arelinear-phase FIR filters. ol 5 ] 0;
* There are severa ways of sharing the zeros of a maximally- 00 <% ) or g 20

flat half-band filter between H ,(z) and H, (- z). All what is o s ] o5y I

needed isthat H,(z) and H, (- z) contain the overall quad- 15 o | -1_; © o : ]

ruplet or areciprocal zero pair on the real axis. 2 o0 1 2 s T2 1 o0 1
* Otherwise, the factorization can be performed arbitrarily. zeros for Fy(2) zeros for F,(2)

For instance, the zeros z = —1 can be arbitrarily shared be- 15 ? 0T ] 1sF o ]

tween H(z) and H, (- 2). R o | il ]

0.5r - : : 1 05F o LA

* A good result in Case A is obtained by forming H,(z) to ot @ i% 1 1 of e o

contain 8 zeros at z = -1 and the first and fourth quadruplets. “o5p . ) ‘O'i’ © i

_1 o - i 7

* Correspondingly, H, (- z) contains 10 zeros at z= —1and the T s o

second and third quadruplets. -1 0 1 2 s 2 -1 0 1

* The following set of pages shows the responses for the re-
sulting five-level wavelet bank.




Amplitude Responses for Ho(2), H1(2), Fo(2), and
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F1(2). Fo(2) [F1(2)] has been normalized such that it

achievesthe value of unity at w=0[ w=T11.

Hu(z): lowpass filter, Hl(z): highpass filter
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I mpulse Responses for Ho(2), H1(2), Fo(2), and F1(2).

Fo(2) [F1(2)] has been normalized such that it achieves

thevalue of unity at w=0[ w=rm.

Impulse responses
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Amplitude Responses for the Resulting Six Analysis

Transfer Functions Ex(2) in Figures3 and 5
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Amplitude Responses for the Resulting Six Synthesis

Transfer Functions Gy(2) in Figures4 and 5
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| mpulse Responses the Resulting Six Analysis

Transfer Functions Ex(2) in Figures3 and 5

Impulse responses
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| mpulse Responses for Resulting Six Synthesis
Transfer Functions Gy(2) in Figures4 and 5

Impulse responses
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Analysis Scaling Function and Wavelet after 5
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Synthesis Scaling Function and Wavelet after 5
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Generalized Orthogonal Wavelet Banks

* In the above, we considered the case where the starting-
point half-band maximally-flat FIR filter with transfer func-
tion E(2) = Hy(2)H,(-2z) had 2L zeros at z= -1 and
2(L - 1) zeros off the unit circle.

* In this case, the filter order is 2K with K = 2L -1.

* In the most general case of orthogonal wavelet banks, our
starting-point half-band filter can have M double zero pairs
on the unit circleand 2(L —2M) zeros at z=-1.

* Thisis because in the orthogonal case the zeros on the unit
circle must be the same for both H(z) and H, (- 2).

* After fixing the zeros on the unit circle, the 2(L — 1) zeros
off the unit circle zeros off the unit circle can be determined
in astraightforward manner in such away that the overall
transfer function E(2) = H(z)H, (- z) becomes that of a
half-band filter.

* The author of these lecture notes has generated a MATLAB
filefor this purpose (not well commented, but available).

* Thefollowing set of pages shows the responses for an ap-
proximately symmetric five-level wavelet bank in the case
whereM =1andL =9.

* The number of zerosat z=-1is7 and the double zero pair
on the unit islocated at z = exp(+j0.728).

* When comparing the filter responses to the earlier case
where there were no zeros on the unit circle outside the point
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z=-1, it isobserved that the zero pair on the unit circle im-
proves the frequency selectivities of the filtersin the bank.

* |f more zeros are moved from the point z= -1, then the se-
lectivities can be further improved.

* However, the smoothness of the impul se responses becomes
worse.

* |t should be emphasized that the smoothness of the impulse
responses of the filtersin the wavelet banksis very crucid in
many applications.
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Zero Plotsfor Hy(2), Hi(2), Fo(2), and Fi(2)
Zeros for Ho(z) Zeros for Hl(z)
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Amplitude Responses for Hy(2), Hi(2), Fo(2), and
F1(2). Fo(2) [F1(2)] has been nor malized such that it
achievesthe value of unity at w=0[ w=rT1.

Ho(z): lowpass filter, Hl(z): highpass filter

Amplitude in dB
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I mpulse Responses for Ho(2), H1(2), Fo(2), and F1(2).

Fo(2) [F1(2)] has been normalized such that it achieves

thevalue of unity at w=0[ w=T11.
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Amplitude Responses for the Resulting Six Analysis

Transfer Functions E.(2) in Figures3and 5
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Amplitude Responses for the Resulting Six Synthesis

Transfer Functions Gy(2) in Figures4 and 5

Gl(z): Solid, Gz(z): Dashed, Gs(z): Dot-Dashed

Amplitude in dB

-100

-150,

|
[
|

1

i i i i i i i i
0.1 0.21t 0.3 0.41t 0.51 0.61 0.7m 0.81 0.91
Angular frequency w

Amplitude in dB

-100

GA(Z)I Solid, Gs(z): Dashed, GG(Z)I Dot-Dashed
T

-150,

Angular frequency w

| mpulse Responses for the Resulting Six Analysis

Transfer Functions Ex(2) in Figures3and 5

Impulse responses
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I mpulse Responses for the Resulting Six Synthesis
Transfer Functions Gy(2) in Figures4 and 5

Impulse responses

0.5

Emol..otT Il"‘nol«
<
)
-05f o
0 2 4 6 8 10 12 14 16
02fF T T B
N o ( PSPy T '} T. T YY
& oe”® eoé
o
_o2k 1
>
0 5 10 15 20 25 30 35 40 45 50
0.1 [
T o~
> AT g
-01
0 20 40 60 80 100

nin samples
Impulse responses

0.05F M ]
— -
N C
~ -

-0.05 b

i
0 50 100 150 200 250

0.02

-0.02

-0.04t

0.03f
— 0.02F
S

=5 0.01F
[

-0.01

0 50 100 150 200 250 300 350 400 450 500
n in samples

173

174
Analysis Scaling Function and Wavelet after 5
Iterations

Analysis scaling function after 5 iterations
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176
Generalized Biorthogonal Wavelet Banks

* Inthis case, both H,(z) and H, (- z) may have their own
zero pairs on the unit circle.
* Thefollowing set of pages show responses in the biorthogo-

nal case considered above with the exception that now two
zeros of both H,(z) and H, (- z) have been moved from

z=-1toazeropair a z=exp(xj0.726m).
* The resulting H,(z) and H, (- z) have now 6 and 8 zeros at
z=-1, respectively.

* When comparing the filter responses to the earlier casg, itis
again observed that the frequency selectivities are increased.
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Zero Plotsfor Ho(2), H1(2), Fo(2), and F+(2)
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Amplitude Responses for Ho(2), H1(2), Fo(2), and
F1(2). Fo(2) [F1(2)] has been normalized such that it
achievesthe value of unity at w=0[ w=T1.

HD(Z)Z lowpass filter, Hl(z): highpass filter
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Impulse Responses for Ho(2), Hi(2), Fo(2), and Fi(2).
Fo(2) [F1(2)] has been normalized such that it achieves
thevalue of unity at w=0[ w=T11.

Impulse responses
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Amplitude Responses for the Resulting Six Analysis
Transfer Functions Ex(2) in Figures3and 5

El(z): Solid, Ez(z): Dashed, Ea(z): Dot-Dashed

Amplitude in dB

'
-100

1

\
L
f\ ’y
1 i '
]
| |
i i i IO N i i L
0lm 02n 03m 04m 05m 06m 07m 08T 091 T
Angular frequency w
EA(Z): Solid, ES(Z): Dashed, Ea(z): Dot-Dashed

-150,

Amplitude in dB

-100

-150,

Angular frequency w




181

Amplitude Responses for the Resulting Six Synthesis

Transfer Functions Gy(2) in Figures4 and 5
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| mpulse Responses for Resulting Six Analysis

Transfer Functions E.(2) in Figures3and 5

Impulse responses
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I mpulse Responses for the Resulting Six Synthesis

Transfer Functions Gy(2) in Figures4 and 5

Impulse responses

T L]

12

14

oovesel !l lagenee

40

45

T
b

T
‘
*.

20

40 60 80
nin samples

Impulse responses
T

100

@

G

-0.05

i
100 150

200

50 100

150 200 250 300 350

400

450

500

100

200 300 400

nin samples

500

183

Analysis Scaling Function and Wavelet after 5
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Synthesis Scaling Function and Wavelet after 5
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How to Measurethe “ Goodness' of a Wavelet Bank

* There exist several factors being crucial for the applicability
of awavelet bank. These include:

I.  Lengths of the impulse responses.
+ Itisdesired to keep the orders of H,(z) and H,(z) as

small as possibleto still provide the required perform-
ance for the overall wavelet bank.

II. Phaselinearity.
« Inmany applications, it is desired that H ,(z) and H,(z)

are linear-phase or approximately linear-phase FIR fil-
ters.

III'. Number of vanishing moments.
* Thisnumber isNif H,(z) hasN zerosat z=-1.

» Polynomial signals of order lessthan or equal toN - 1
arefiltered out by the H,(z)’sin the wavelet bank and

passed trough the H(z)’s.

V. Regularity or smoothness.

* Inorder to give the definitions, we form the following
transfer functions:

A(z)=2 HO(Z)HO(ZZ)"' Ho(Zzi_2 )HO(ZZ‘A),
BY(2)=2 Ho(z)H0(22)~-. HO(ZZ‘_Z )Hl(Zzi_l),

c(y=2 FO(Z)FO(ZZ)’ ~Fy (Zzi_2 )Fo (Zzi_l).

and
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DV (2) =2 Fy(2)F, (22)~ ~Fy (22'72 )Fl(zzlfl).

* Here, itisassumed that H,(z) and Fy(z) [H,(z) and
F,(z)] have been normalized to achieve the value of
unity atz=-1[z=1]j.

e From the above transfer functions we can generate the

following continuous-time analysis wavelet and scaling
function:

Y(t) =lima® 2 -1))
i > 00
o(t) = lima® ¢(2' -1) ,
[
where a (n) and b (n) are the impul se-response coef-
ficients of A(i)(z) and B(i)(z), respectively.

¢ Similarly, the synthesis wavel et and scaling function can
be generated as follows:

@) =limc® (t(2' -1)
o(t) =limd® (2 -1) ,

| > 00
where ¢ (n) and d) (n) are the impulse-response coef-
ficientsof C"(2) and D" (2), respectively.

* Regularity is the number of continuous derivatives of the
above functions.

* The above impulse responses have been formed in such a
way that asi increases a) (t(2' 1)) isall the time non-
zero in the same interval and we are getting more points
for (t)in thisinterval without changing its shape. The

same is true for the other impulse responses and func-
tions.
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» In connection of generating five-level wavelet banks
previously, we gave the analysis and synthesis wavelets
and scaling functions after fiveiterations (i = 5).

» Inthe most general case, the regularity of the above
functions, denoted by s, is not an integer. Let mbe an
integer such that m < s<m+1. Then, the function (t)
has aregularity of sif the mth derivative of ((t) resem-
bles|t —t,|* ™ at each point t = t, in the interval where
Y (t) isnonzero.

V. Frequency selectivity

* Typicaly, the selectivity of the filtersin the wavelet

bank isvery poor. Thisis because wavelet banks are

normally used more or less in preserving the waveform
of aone- or two-dimensiona signal.

» Images aretypical cases. We arelooking at images and
our eyes are the referees of the quality. In audio applica-
tions, in turn, the frequency-domain behavior of the filter
bank is of great importance as your ears are the referees
of the quality.

V1. Number of levels

» Thisdepends on the application. Typically threeto five

levelsis agood selection.

* The above-mentioned measures are very conflicting.

* The selection of a proper wavelet bank depends strongly on
the application.

* Hopefully, the MATLAB Wavelet Toolbox manual helps
us.
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* |t should be aso pointed out that in the case of biorthogonal
wavelets the analysis and synthesis parts may be very differ-
ent in order to achieve a satisfactory overall performance.

* For biorthogonal wavelets, the selectivity of the analysis part
and the smoothness of the synthesis part are of great impor-
tance.

* There are also available very useful pseudo wavelets. If you
are interested in them, contact the lecturer, e-mail:
ts@cs.tut.fi.

* There are also several MATLAB files (all the designs and
plots lecture notes have been generated by own files).
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Some Comments

* In the above, we considered only some starting-point two-
channel filter banks for generating multilevel wavelet banks.

* Furthermore, we concentrated only on FIR wavelet banks,
athough there are also | IR wavelet banks.

» We generated our banks by further processing the lowpass
filtered and decimated signal.

* In the most general case, some of the highpass filtered and
decimated signals are processed by the basic building-block
two-channel filter bank, yielding the so-called wavelet
packet.

» The extreme case is the tree-structured filter bank generated
by using the same building-block two-channel filter bank.
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Part V.F: Octave Filter Banks

« The multilevel wavelet banks generated in Part V.E are ex-
amples of octave filter banks, although their frequency se-
lectivity isvery poor.

« However, we can mimic the same procedure with the excep-
tion that now also IR two-channel filter banks are under
consideration.

« Hence, given atwo-channd filter bank with analysisfilter
transfer functions Hy(2) and Hy(2) and the synthesis filter
transfer functions Fy(2) and F4(2), the analysis and synthesis
filter can be generated in the five-level case as shownin
Figures 1 and 2.

* Figure 3 shows the overall filter bank.

« If for the building-block two-channdl filter bank , the input-
output transfer function is T(2) an dlpassfilter, likein the
case of two-channd IR filters built using half-band IR fil-
ters (Part V.B), then for the overall system, the input-output
transfer function becomes in the case of Figure 3

Toe@ =11 T(2")

if Cs(2=Cs(2)=1, C4(2=T(2), C3(2 =T(AT(Z)),
C,(2) =TT (Z2)T(2*), and C,(2) = i, T(2? )
* In the case of a perfect-reconstruction two-channel filter
bank with T(2) = 2%, Toe(2) = 23, Ce(2) = Cs(2) =1,
Ci=75C@=2*Ci2d =2, and Cy(2) = ™.
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Figure 1. Five-Level Octave Filter Bank: Analysis
Part.
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Figure 2. Five-Level Octave Filter Bank: Synthesis
Part.

Ye(N) ——

S(z), Synthesis bank

Y5(r) ——

S(Z ™~
y4(r)
S(z

ya(r) > - S@h,
yo(r) »- Sl y(n)
y1(r) >

R I 1 5

Sy —
- ] §

Equivalent structure:

yﬁ(n)—>|ﬁ|->| Ge(2) = Fo(2)Fo(Z2)Fo(24)Fo(28)Fo(226)
ys(r) —| 432

Gs(2) = Fo(2)Fo(z*)Fo(z*)Fo(z®)F1(2*0)

ya(r) —| 416 G4(z) = Fo(2)Fo(@)Fo(z*)F1(z®) y(n)

ys) {48 | G3@) = Fo@Foz)F1(")
yo) {44}l Ga2) = Fo@F1(@)

y10) =42}l 610)=F,@)

194

Figure 3. Overall Five-L evel Octave Filter Bank.
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Example 1: Five-Level FIR Octave Filter Bank

* It isdesired to build afive-level FIR filter bank using the
minimax orthogonal perfect-reconstruction two-channel fil-

ter bank considered on Pages 51 and 52 in this part of lec-
ture notes.

* Figure 4 shows the amplitude responses for the E, (z)'s and
Gy (2)'s (see Figures 1,2,and 3).

* The amplitude responses for the G, (z)'s have been nor-
malized such that their maximum valueis equa to unity
.The actual responses are obtained by multiplying the am-
plitude responses by the corresponding interpolation factor.

« Figures 5 and 6 show the corresponding impulse responses
for the E, (2)'sand Gy (2)’s. In this case, no normalization
has been performed.
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Figure 4. Amplitude Responses for the Analysis and

Synthesis Filtersin an Example Five-L evel

Octave

FIR Filter Bank.

El(z),Gl(z): Solid, Ez(z),Gz(z): Dashed, ES(Z),GQ(Z)Z Dot-Dashed

Amplitude in dB
]

i i
0.1m 0.2m 0.31 0.41t 0.51
Angular frequency w

EA(Z),GA(Z): Solid, ES(Z).GS(Z)I Dashed, EB(Z),GG(Z)Z Dot-Dashed

Amplitude in dB

Vi

1114

i \Mwu

i '

I il iy

" i gn\‘,
CRER

| }H\ [ERU

RN

Angular frequency ®

i i i i
0.4m  05m  0.6m 07m  0.8m  0.9m s




197

Figure 5. Impulse Responsesfor the Analysis Filters

in an Example Five-L evel Octave FIR Filter Bank.
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Figure 6. Impulse Responses for the Synthesis Filters

in an Example Five-L evel Octave FIR Filter Bank.
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Example 2: Five-Level |IR Octave Filter Bank
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* Itisdesired to build afive-level 1R filter bank using the
two-channel IR filter bank considered on Pages 91-94 in
this part of lecture notes.

* Figure 7 shows the amplitude responses for the E, (z)'s and
Gy (2)'s (see Figures 1,2,and 3).

 The amplitude responses for the G, (z) s have again been
normalized such that their maximum valueis equal to unity.

« In this case, the amplitude response for the input-output

transfer function is equal to unity at all frequencies, but there
is a phase distortion.
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Figure 7. Amplitude Responses for the Analysis and

Synthesis Filtersin an Example Five-L evel Octave

IR Filter Bank.
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