80509 LINEAR DIGITAL FILTERING |

PART IV: Design of lIR filters

1) Synthesis of IIR filters by transforming an analog filter
to its digital equivalent using the bilinear transformation

2) Basic types of classical analog and digital filters

3) Synthesis of highpass, bandpass, and bandstop digital
filters based on transforming a lowpass digital filter
into the desired one using a proper transformation.

® What to read for the examination ?:

1) How to use the bilinear transformation for mapping an

analog filter into its digital equivalent (the overall
synthesis procedure)

2) Basic types of classical filters: design formulas only
for Butterworth lowpass analog filters.

3) Basic idea of using digital lowpass-to-lowpass, lowpass-
to-highpass, lowpass-to-bandpass, and lowpass-to-band-

stop transformations



DESIGN OF CLASSICAL IIR FILTERS

Traditionally, the synthesis of infinite impulse response
(IIR) lowpass digital filters is accomplished by trans-

forming an analog filter to its digital equivalent.

e The two basic ways to perform the desired transfor-
mation is to use the bilinear transformation or the

impulse-invariant technique.

e The design of highpass, bandpass, and bandstop filters
1s usually performed by applying a proper transforma-

tion converting a lowpass filter into the desired one.
e In this cource, we concentrate on

e Synthesis of lowpass classical digital filters obtain-
able from an analog prototype filter through the

bilinear transformation (the best technique).

e Syntesis of highpass, bandpass, and bandstop filters
based on transforming a lowpass digital filter into

the desired one using a proper transformation.

e It should be pointed out that there exist several
more general sophisticated design techniques di-
rectly in the z-plane (to be considered in the course
“Digital Linear Filtering I1”)
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Organization of This Chapter

1) First, the squared-magnitude functions of the four ba-

3)

sic classical analog lowpass filter types are considered.
For each type, the formulas are given for determining
the poles and zeros of the filter as well as the scaling
constant.

Second, it is shown how the analog lowpass filter can
be converted to its digital equivalent with the aid of
the bilinear transformation. Illustrative examples are
included showing how to actually perform the synthesis

for given digital filter criteria.

Third, it is shown how to convert a lowpass filter to
another lowpass, highpass, bandpass, or bandstop filter

with the aid of transformations.

Finally, a general-purpose matlab file for designing
classical digital filters is introduced in Appendix A.

The design of digital filters is convenient to perform
with the aid of analog filters since there exist rather
simple formulas for finding the poles, zeros, and the
scaling constant for these filters.

e The purpose is not to study analog filters in details.
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They are used just as a convenient intermediate tool
for finding a proper digital filter. If you are interested
in the details, you are encouraged to find a textbook

on analog filters.

The historical reason for this is the fact that when
people started designing IIR digital filters, the theory
of analog filters was well-known. What was left was to
find a transformation to map the analog filter to the
corresponding digital filter. The proper transformation

is the bilinear transformation.

It should be pointed out that the similar formulas can
be derived directly in the z-plane. The next duty for
the lecturer.
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Analog Lowpass Filters Under Consideration

e ‘Transfer function of an analog filter is of the form

M M
Z CkSk H() H(S — Zk-)
k=0 . k=1 .

Ha(s)zggz = (1)
1+ dy.s" (s — pr)

e In order to guarantee the filter stability, the poles p; =
o + 78 must lie in the left-half s-plane, that is, the
real parts of the p;’s (the o4’) must be less than zero.

e Furthermore, for an analog filter to be realizable, it is
required that M < N and the coeflicients ¢; and dy

are real.

e The squared-magnitude function of the filter with
transfer function given by the above equation can be

expressed in the following forms:

| Hao(59)]* = Ha(s)Ho(=5)|5 = jq = Ha(§2) Ha(—jQ)
M |
Zek(92)k

N
L4+ > fr(Q2)F
k=1

_ En ()
- Fn(93)

(2a)
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where

Ex(0) = ex(02)* (2b)
and k:?v
Ey(9) = 1+ (@) (2

o Alternatively, if |H,(j€2)|* is known, then H,(s)H,(—s)
is obtained from the above squared-magnitude func-
tion using the substitution 2 = s/j giving

e If the stable H,(s) has the poles [roots of D(s)] at py, =

or + j€), then the corresponding unstable transfer
function H,(—s) has poles [roots of D(—s)] at p;, =
—0oy -+ j§2 lying on the right-half s-plane.

e Therefore, the poles of H,(s) can be found by first
locating the roots of Fyy(—s?) and then selecting those
roots which lie on the left-half s-plane.

e For the classical analog filters with M > 1, M is even
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and Fy;(92?%) is always factorizable as

M/2
Eam(9?) = eo | [ 192 — Q7)%, (4)
k=1
so that
M/2
Bu(~5) = e [[[-5* ~ 9" @
k=1

This means that both H,(s) and H,(—s) contain com-
plex conjugate zero pairs on the imaginary axis at the
points £j€); for k =1,2,..., M/2. At these frequency

points, the squared-magnitude function becomes zero.

Note that for analog filters, the imaginary axis s =
782 (analog frequency domain) plays the same role as

the unit circle z = ¢/¥ (digital frequency domain) for
digital filters.



EXAMPLE

o |H,(j)|* is given by
[Ha(j) = 1/[1 + (2™,

e Using the substitution 2 = s/j gives

Hals)Ha(—3) = e 5o = 111+ s,

e The 28 roots of 1 + €%(—s?)!* = 0 are located at

|
. w[1/2+(2k—1) /(28 _
pk—mej ( /( )],k—1,2,14

and
1 .
D = meﬂ[—l/”(%—l)/ @) k=1,2,...14
e Theroots py (px) for k = 1,2, ..., 14 are on the left-half
(right-half) s-plane.

e The stable transfer function is then

Ho(s) = —% Hy=T[(~0).
H(S ) k=1

k=1

e The above selection of H, guarantees that |Ha(jﬂ)|2

achieves the value of unity at 2 = 0.

e The next transparency shows the poles of both H,(s)
and H,(—s) as well as the amplitude response of H,(s)
for e = 10%2/10 — 1 = 0.047128548.
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14th-Order Butterworth Analog Filter with Q, =
1, 2, = 1.8944272, A, = 0.2 dB, and A, > 60 dB

14th—order Butterworth filter with Ap=0.2
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Normalized Specifications for an Analog Lowpass
filter

e The figure below gives tranditional specifications for
the squared-magnitude function of an analog lowpass

filter in the case where the passband edge is normalized
to be located at 2, = 1.

e For historical reasons, it is required that in the pass-
band 0 < Q < Q, = 1 |H,(jQ)|* stays within 1 and
1/(1 + €%).

e In the stopband Q, < Q < oo, |H,(j€)|* is less than or
equal to 1/A.
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DETERMINATION OF ¢ AND 4?2 FROM
SPECIFICATIONS IN DESIBELS

Usually, the criteria are given as follows:

—A, < 10log |H, ()PP <0for0<Q <1 (6a)
10logy | H,(59)|* < — A, for Q, < Q < 00.(6b)

e Here, A, and A, are the maximum passband varia-
tion in dB and the minimum stopband attenuation
in dB, respectively.

e Both of these quantities are positive.
o After some manipulations, we get
e =104/ — 1 (7a)

and
A? = 104/10, (7b)
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CLASSICAL FILTERS

1) Butterworth filters

e Maximally flat both in the passband and stopband

2) Chebyshev Type I filters or simply Chebyshev filters

e Equiripple in the passband and maximally flat in
the stopband

3) Chebyshev Type II filters or inverse Chebyshev filters

e Maximally flat in the passband and equifipple in
the stopband

4) Elliptic (Cauer) filters

e Equiripple both in the passband and stopband
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BUTTERWORTH FILTERS

e For the Nth-order Butterworth filter the squared-
magnitude function is given by

1
14 202N

|H.(5Q)| = (8)

e This function achieves the value of unity at {2 = 0 with
the first 2NV — 1 derivatives being zero at this point
(maximally flat passband).

e At infinity, the value is zero and the first 2/V —1 deriva-
tives are zero (maximally flat stopband).

e The following figure gives the normalized specifica-
tions, where Q, = 1, |H,(59,)> = 1/(1+ €*), and it
is required that |H,(5Q,)> < 1/A2%

|H, (jQ)]?
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TRANSFER FUNCTION

e In order to meet the criteria given in the figure of the
previous transparency, the filter order N must be se-

lected such that
1 1

< — 9
1+ e2Q2N = A? )
o Alternatively, this condition can be expressed as
2 _ 2
N Z loglo[(A 1)/6 ] (10)
2. 10%10 Qs

e By analytic continuation (j2 = s), equation (8) can
be extended to the complex s-domain, giving

H(H(~5) = T (1

e The poles of the stable H,(s) are the left-half plane

roots of 1 + €2(—s2)" = 0, whereas the poles of the
unstable H,(—s) are the right-half plane roots of 1 +

e(—s2)" = 0.
e The N poles of the stable H,(s) are given by

1 .
D = ;U—Neml/”(%*”/(””, k=1,2,...N. (12
or
Pr = o + 780, =12,...N, (13&)
where . (2% — 1)
m w2k —
O = mCOS(g —+ 2N ) (13b)
1 . 7 7w(2k—-1)
Q) = GT/NSIH(§ + TN ). (13c)



For above design, the passband criteria are just met,
whereas
A2 =14 20 (14a)
or R
As = 10log;o(1 + Q). (14b)

These values are in most cases larger than the specified
values A% and A..

All the poles of H,(s) lie on a circle of radius 1/e'/V
centered at the origin of the s-plane. The pole with
largest imaginary part appears at angle 7/2 + 7/(2N)
relative to the positive real axis. The other poles ap-
pear at angular increments of 7/N. This is exemplified
in transparency &. |

The transfer function for which |H,(j0)]? = 1 or
H,(0) =1 is then

H,(s) = — o (15a)
11(s—ps)
k=1
where N
Hy = H(*pk). (150)
k=1

All the N zeros are lying at infinity.

o Lor the very original Butterworth filters, €2 =1 so
that |H,(j,)|* =1/2 and A, = 3 dB.
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EXAMPLE

e Later on, when designing digital filters with the aid of
analog classical filters, we end up with the following
specifications:

A,=02dB, A;>60dB, Q,=1.8944272.

e Using the formulas described above, we obtain
e =10%/10 — 1 = 10910 _ 1 = 0.047238748,
A2 — 10A5/10 — 1060/10 — 106

and
N > logy[(A% —1)/€?]/[2 - logy, Q4]

= 13.202340 = N = 14.

e The fourteen poles are located at
—0.12487140 + 51.10826429,

—0.36835261 £ 51.05269129,
—0.59336309 £ 50.94433195,
—0.78861987 £ 70.78861987,
—0.94433195 £ 50.59336309,
—1.05269129 £ 70.36835261, -

and
—1.10826429 + 70.12487140,
whereas
Hy = 4.60636100,
and

A, = 10log (1 + €2Q2V) = 64.4267



e The pole-plot for this filter (those given by x) as well

as the amplitude response are shown in transparency
8 (all the zeros are lying at the infinity (not visible)).



CHEBYSHEYV FILTERS OR CHEBYSHEV TYPE
I FILTERS

e The squared-magnitude function of this filter of order
N is given by
1

H,(jQ))° = 16
HGOP = o (16
where (NeosT1), |0 <1
_f cos(N cos : <
Tn(@) = {cosh(N cosh™Q) Q] >1 (166)

is the Nth-degree Chebyshev polynomial.

e In the normalized passband 0 < Q < ), = 1, this func-
tion alternatingly achieves the values of 1 and 1/(1+¢€*)
at N + 1 points such that |H,(jQ,)]*? = 1/(1 + €%).

‘For N even, |H,(j0)> = 1/(1 + €%) and for N odd,
|H,(50)|? = 1 (equiripple passband).

e At infinity, the value of |H,(5Q)|? is zero and the first
2N — 1 derivatives are zero (maximally flat stop-
band) (see the figure shown below).

IH, (j)l? N odd |H, (j)l? N even
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TRANSFER FUNCTION

In order to meet the criteria of the previous trans-
parency, it is required that

1 1 cosh™ {/[(42 — 1)/€%}

< —= N > )
1+ e2T%(Q) — A2 - cosh™1(Q,) (160)
a

where cosh™ z can be evaluated from

cosh™ 'z = In(z + /22 — 1). (16b)

Like for Butterworth filters, the transfer function is of
the form

H,(s) = — Hy , - (17a)
11(s = ps)
where .
[I(=p»), N odd
Hy = q k=1 N (17b)
V1/(1+ €2) H(—pk), N even.
X k=1

It can be shown (for details see a textbook on analog
filters) that the poles H,(s) are located at

pr=0r+ 7%, k=1,2,...N, (18&)

where

Y . [(Qk o 1)7T]

18b
sin[—~ (18b)

O — —
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-1 (2k—1
O = 7 +27 cos[( S )W] (18¢)
and N
1++v1+€?
v = ( ) (18d)

€

These poles are on an ellipse centered about the ori-
gin in the s-plane. The ellipse has minor-axis length

-1
=~ and major-axis length 21— ~ and is given by the
equation

do2 402
L k=1, (19)
(y=71)" (v+~1)

For details see transparency 21, which gives the poles
of H,(s) by x and the poles of H,(—s) by astrisk.

Like for Butterworth filters, all the zeros are located
at infinity.

Futhermore, the squared-magnitude function of the
above filter just meets the passband criteria, whereas

A% =1+ ET3(Q,) (20a)
or R
As = 101og o[l + 2T (Q5)], (200)

which are in most cases larger than the specified values

of A? and A,.
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EXAMPLE

e We again consider the specifications:

A,=0.2dB, A,>60dB, ,=1.8944272.

o Like for Butterworth filters, €2 = 0.047238748 and
A? = 105, whereas

N > cosh ™ {/[(A% — 1)/€2]}/ cosh ()
= 7.2808916 = N =38.

e The eight poles are located at
—0.05514327 4+ 71.01921190,

—0.15703476 + 70.86404612,
~0.23501912 + §0.57733716,

and
—0.27722396 £+ 70.20273385,

whereas
Hy = 0.035987195.

e The pole-plot for this filter (those given by x) as well
as the amplitude response are shown in the next trans-

parency (all the zeros are lying at the infinity (not vis-
ible)).

e For this filter, A, = 67.8310 dB.



Eighth-Order Chebyshev Analog Filter with 2, =
1, Qs = 1.8944272, A, = 0.2 dB, and A, > 60 dB

8th—order Chebyshev filter with Ap=0.2

T T T T T

1t XX .

X
0.8 xisthe pole of H_a(s) ~ “is the pole of H_a(-s) ]

0.6 x 0 x ]

0.4 : .

0.2} x % i

Imaginary part
=)
T
1

Real part
8th—order Chebyshev filter with Ap=0.2

R H T HE | T H A A |

e L LR R T

L

)

S
T

Amplitude in dB

AT L NP i Ll
10° 10 10
Angular frequency Omega

L
o
S

—_
(=]
—h
o

(=)

T T

!

o

o

G
T

Amplitude in dB
f
o
-

_02 : ; S S S i’
10°
Angular frequency Omega




INVERSE CHEBYSHEYV FILTERS OR CHEBY-
SHEV TYPE II FILTERS

e The squared-magnitude function of this filter of order
N is given by | _
9o 1

B = e =1y P

(21)

e Like for Butterworth filters, this function achieves the
value of unity at 2 = 0 with the first 2/NV —1 derivatives
being zero at this point (maximally flat passband).

o In the stopband Q, < Q < oo, |H,(jQ)|? alternat-
ingly achieves the values of 1/A? and zero at N + 1
points such that |H,(jQ,)]* = 1/A% For N even,
|H,(joo)|? = 1/A? and for N odd, |H,(joo)|? = 0
(equiripple stopband) (see the figure below).

[H, (j)l? N even

- — e —_—— ————— e e —_——

e — — e . —— —
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TRANSFER FUNCTION

e Like for Chebyshev filters, in order to satisfy 1/[1 +
(A% —1)/[Tn(Qs/Q))%] > 1/(1 4 €2), it is required that

cosh™ ' {/[(42 ~ 1)/}
N2 cosh™(§2,) (22)

e The transfer function is of the form

N N
H, H(s — zk)/H(s —pr), NN even
Hy(s) = 4 (N—1) N
H, H (s — zk)/H(s —pi), IN odd
\ k=1 k=1
(23a)
where
(N N
H(—pk)/H(—zk), N even
Hy = 4 kN)l (N 1) (23b)
| k=1
e The zeros are located at
€2
2L =] k=1,2,---,N. (24)

cosi[(2k —1)/(2N)]m}’

e Note that if N is odd, then for k = (N +1)/2, the zero
lies at the infinity (numerator order is N — 1).
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e The poles are located at

pk:Jk+ij7 k:1727'°°7N7

where
Qsak
O —
a,% + (32
_Qsﬁk
). =
aj + B
with ) 2k 1
Y= — 1)
Q= 5 sin| TN ]
v+t (2= D)
B = 5 cos| 55|
and

1/N
y=(A+va—1)""

(25a)
(25b)

(25¢)

(25d)

(25€e)

(25f)

e In this case, the poles do not lie on a simple geomet-
ric figure as they do for Butterworth and Chebyshev

filters.

e Note that the above formulas for Chebyshev and in-
verse Chebyshev filters have been constructed such
that the Chebyshev filter just meets the passband cri-
teria, whereas the inverse Chebyshev filter just meets

the stopband criteria.

If it is desired that the inverse Chebyshev filter just

meets the given passband criteria, then then the de-
sired result is achieved by evaluating A? according to

equation (20a).
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EXAMPLE

e We again consider the specifications:

A,=02dB, A, >60dB, €, =1.8944272.

o Like for Chebyshev filters, €2 = 0.047238748 and A2 =
10°, whereas
N > cosh™'{1/[(A% — 1)/€?]}/ cosh™(£2;)
= 7.2808916 = N =28.

e Knowing the fact that the Chebyshev and inverse
Chebyshev filter meet the same amplitude criteria, our
filter can be forced to have A, = 0.2 dB by selecting
As; = 67.8310 dB, giving A? = 6068718.6.

e The eight poles of the resulting filter are located at
—0.18212766 + 71.16381690,

—0.57926246 + 71.10192829,
—1.03855485 + 70.88204869,

and
—1.42446611 4 50.36015085.

e The eight zeros are located at
+71.93154121,

+2.27840821,
+3.40987886,



and
+79.71051342,

whereas
Hy = 0.00036795086.

e The following transparency gives the pole-zero plot as
well as the amplitude response for this filter.



Eighth-Order Inverse Chebyshev Analog Filter
with Q, = 1, Q, = 1.8944272, A, = 0.2 dB, and
A; > 60 dB

8th-order inverse Chebyshev filter with Ap=0.2 and Omegas=1.8944
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'ELLIPTIC (CAUER) FILTERS

e Like for Chebyshev filters, in the normalized passband
0 <Q <Q, =1, the squared-magnitude function of a
filter of order N alternatingly achieves the values of 1
and 1/(1+ €*) at N + 1 points such that |H,(59,)|* =
1/(1+ €?). For N even, |H,(j0)|?> = 1/(1 + €%) and for
N odd, |H,(j0)|?> = 1 (equiripple passband).

e Like for inverse Chebyshev filters, in the stopband
Q, < Q < oo, |Hy(jQ)|* alternatingly achieves the
values of 1/A? and zero at N + 1 points such that
|H,(5Q,)|* = 1/A%. For N even, |H,(joo)|?> = 1/A? and
for N odd, |H,(jo0)|?> = 0 (equiripple stopband).

n ODD n EVEN
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TRANSFER FUNCTION

e For the elliptic filter, the squared-magnitude function

has a very complicated form (see a textbook on analog
filters).

e The transfer function is of the form

H, - 82 A i
Hals) = DO(OS) E s* + B—;S 40- By’ (26a)
where N odd
=i P N e
and |
O P

e The transfer-function coefficients and the multiplier
constant can be computed using the following formulas
In sequence:

k=1/8; (27a)
K=+1-k? (27b)

0 = (1/2)(1 - VE) /(1 + Vk) (27¢)
g = qo + 2qy + 15¢) + 150¢;° (27d)
D= (A*—-1)/é (27¢)

N > log(16D)/ logy4(1/q) (27f)
A= ;j\—fln[\/\/gj 1] (27)



l2q1/4 _o(=1)™mg™™ D) ginh[(2m + 1)A]‘
B 1+ 2 S (—=1)mg™ cosh[2mA]

(27h)
W= \/ (1+ ko3)(1 +53/k) (27i)

q, — 20/ S m (=)™ sinf(2m + 1))/ N]

142> (—1)mg™ cos[2mm/N] ’
(275)

where
4, Nodd .
M:{i”l/Q, Neven® ‘=127 (27k)
0o = 0o/ Vk - (270)
Vi= /- kDA - Q2/k)  (27m)
1
Agi = ey (27n)
(GoV2)” + (UW)?
= 270
%= TR+ 6202) (270)
200V,

Bui = : (27p)

VE(1 +5202)?
00 [ [i—1[Boi/Aoil, for N odd
o= 11 27
! { \/1_1+“6“2H7::1[BOi/A01], for N even. (27q)

e In practice, three or four terms in the series of equa-
tions (27h) and (27j) are sufficient.

e The passband criteria are just met, whereas the result-
ing minimum stopband attenuation is

As = 10logyole?/(16¢Y) + 1]. (27r)
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EXAMPLE

e We again consider the specifications:

A,=02dB, A,>60dB, Q,=1.8944272.

o ¢ =0.047238748 and A% = 10°, whereas
k=1/Q,=0.527864, k' = /1 — k2 = 0.8493289

a0 = (1/2)(1 — VE) /(1 +VE) = 0.0204022
q = qo + 2g5 + 15q3 + 15045 = 0.0204022
D = (A* —1)/€* = 21218562

N > log((16D)/log,(1/q)
= 5.046816 = N =6.

e The six poles of our filter are located at
—0.08205619 £ 71.03019607,
—0.25402886 £ 70.79507992,

and
—0.39500663 £ 70.30821324.

e The six zeros are located at
+491.95117116,
+92.57623214,

and
+76.79458015,

whereas
Hy = 0.00015647808
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and

As = 76.1109.

e The next transparency shows the pole-zero plot and
the amplitude response for this filter.



Sixth-Order Elliptic Analog Filter with Q, = 1,
(2 = 1.8944272, A, = 0.2 dB, and A, > 60 dB

6th—order elliptic filter with Ap=0.2 and Omegas=1.8944
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BILINEAR TRANSFORMATION

e The most efficient and popular analog-to-digial trans-
formation is the bilinear transformation.

o It transforms H,(s) to its digital equivalent H(z) via
the relation

H(z) = Ha(s)|s = o(z 1) /(2 + 1) (23)
e Here, c can be selected arbitrarily.

e Alternatively, H,(s) can be obtained from H(z) via the
relation

Hl2) =H@)s = 14 5/0) /(1= s/e) 2

e The transformation s = ¢(z—1)/(z+1) is a one-to-one
mapping between the s-plane and the z-plane and has
the following desired properties:

e The left-half s-plane is mapped to the interior of

the unit circle = A stable H,(s) is mapped into a
stable H(z).

e 'The right-half s-plane (unstable region for poles) is
mapped to the exterior of the unit circle (unstable
region for poles).

e The imaginary axis s = 5 is mapped to the z-
plane unit circle z = ¢/ = The analog frequency
domain (imaginary axis) maps onto the digital fre-
quency domain (unit circle), albeit, as we shall see,
nonlinearly.



-35 -

RELATIONS BETWEEN THE s- AND -PLANES

s-Plane z-Plane

J0 Image of

1

Q
A\

Image of
left half-plane

e Substituting z = €’* into equation (23) results in, after
some manipulations,

H(e’) = Hy(jctan(w/2)). (25)

o Alternatively substituting z = €/* and s = jQ into
s =c(z—1)/(z+ 1) we end up with the realtions

() = ctan(w/2) (26)

or
w = 2arctan(/c). (27)
e s =0 and s = 0o are mapped to z = 1 and z = —1,

respectively.



DIGITAL FILTER DESIGN USING THE BI-
LINEAR TRANSFORMATION

e The following figure exemplifies the design process,
where the bandedges of the digital filter, w, and w;,
as well as allowable passband and stopband variations
are specified.

e Here, the design of the digital filter is converted to that
of the analog filter for which the required passband and
stopband variations are the same.

3 w

o

}j w=2 orcton(

|H, ()] i
W
@ ; Q, = Ctan(i"é.&)=1
‘ \ | f, = C ton (—‘i}i)
\ | . 2
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SYNTHESIS PROCEDURE

Step 1

Step 2
Step 3

Step 4

Step 5

Determine c¢ such that w, is mapped to 2, = 1.
The condition for cis 2, = 1 = ctan(w,/2), giving

c = cot(w,/2). | (28)

Determine €2, = ctan(w,/2).

Determine €? and A? from the passband and stop-
band ripples A, and A, using equation (7).

Select the analog filter type (Butterworth, Cheby-
shev, inverse Chebyshev, or elliptic) and syn-
thesize the minimum-order filter transfer func-
tion H,(s) whose squared-magnitude resonse stays
within the limits unity and 1/(1 + €) in the pass-
band 0 < © < 1 the limits zero and 1/A4?% in the
stopband 2, < Q) < 0.

The desired digital filter is then
H(z) = H(8)|s = ¢(z — 1)/ (z + 1) (29
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In practice, the desired H(z) can be conveniently gen-
erated by first determining the poles and zeros of the
digital filter using the relation z = (1 + s/c)/(1 — s/c)
to each pole and zero of the analog filter. This gives
the poles and zeros of the digital filter, denoted by Sy
and oy, for k =1,2,---, N, respectively.

The resulting H(z) is then
N

N
H(z) = ko | J(1 = ™) /][0 = Brz™Y).  (30)
k=1

k=1

The constamt &y can be then determined from the con-
dition that H(1) =1 (JH(e/*)| = 1 at w = 0) for But-
terworth and inverse Chebyshev filters as well as for
Chebyshev filters and elliptic filters for N even. For

N odd, H(1) = 1/v/1+ € for Chebyshev filters and
elliptic filters.

Note that the zero at infinity (IV zeros for Butter-
worth and Chebyshev filters and one zero for inverse
Chebyshev and elliptic filters for N odd) are mapped
to z = —1.
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ILLUSTRATIVE EXAMPLE

o It is desired to synthesize a Butterworth, Chebyshev,
iverse Chebyshev, and an elliptic filter such that the
sampling frequency is F; = 10 kHz, the minimum pass-
band ripple A, = 0.2 dB in the passband 0 < f < 2
kHz and the minimum stopband attenuation is A; = 60
dB in the stopband 3kHz < f < 5 kHz= F,/2.

Step 1

Step 2

Step 3

Step 4

w and the ’real’ frequency are related via w =
2mf/F, so that in terms of w the passband and
stopband edges are w, = 047 and w, = 0.6,
respectively.

wp = 0.4m is mapped to €2, = 1 in the bilin-
ear transformation by selecting ¢ = cot(w,/2) =
1.3763819. Then, 2, = ctan(w,/2) = 1.8944272.

Applying equations (7a) and (7b) gives € =
1047/10 — 1 = 0.0471285 and A% = 104s/10 — 108

These are the same criteria we considered previ-
ously for all the four classical analog filter types.
All what is left is to apply the bilinear transfor-
mation.
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BUTTERWORTH FILTER

e By applying the substitution z = (1 + s/¢)/(1 — s/c)
with ¢ = 1.3763819 to the poles of the anaolg filter
given in transparency 15, we end up with the following
fourteen z-plane pole locations:

0.89585800exp(470.43312181x

)
0.71526001exp(£50.429702197)
0.56158624exp(+50.421939757)
0.42686164exp(+70.407317997)
0.30642203exp(+70.379346827)
0.19959206exp(+70.318418707)
0.11888906exp(+70.154722697)

o All the fourteen zeros of the analog filter lying at in-
finity are mapped to z = —1.

e This filter can be implemented in following the cascade
form (see the next transparency)

H(z) = ky H[l + aO?fz_ + a1‘iz_ ] (31)

e Combining complex-conjugate pole pairs, seven (R =
7) second-order denominator sections become

1 —0.210236982"1 + 0.01413460z 2
1 —0.215565262"1 + 0.039836992 2
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1 —0.226771742"" 4 0.093894462 2
1 —0.245080322z"* 4 0.182210862 2
1 —0.272687002" 4+ 0.3153791122
1 —0.31336428z ! + 0.511596892 2
1 —0.373683232~" + 0.8025615422

e Seven second-order numerator sections are

14+ 2271+ 272

® ko can be determined from the condition H(1)=1, giv-
ing ky = 5.8671114210 - 10~°.

o A, =64.42665dB
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CASCADE-FORM REALIZATION

e The following figure shows the corresponding real-

ization. For the unscaled case, ag; = a9, = 1 for
1 = 1,2,...,R. For scaling this realization, see Part
PR Eefigks Wordlength Effects.
V: Finite

Ko

x[n] yin]
—l>_> H,| (2) > H2(z) - 000 HR(z) -
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AMPLITUDE IN dB
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0.4xw 0.67
FREQUENCY
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MORE DETAILS
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CHEYSHEV FILTER

e By applying the substitution z = (1 + s/¢)/(1 — s/c)
with ¢ = 1.3763819 to the poles of the anaolg filter
given in transparency 20, we end up with the following
eight z-plane pole locations:

0.94957258 exp(+50.406093257

)
0.84907285 exp(4-70.359567787)
0.74725104 exp(=+50.258574697)
0.67089242 exp(=£;0.096889417)

o All eight zeros of the digital filter are located at z =
—1.

e This filter can be implemented in the form of equation
(31) with R = 4.

e Four second-order denominator sections are:
1 — 1.280104102~! + 0.45009663 22

1 —1.027925052"1 + 0.558384122 2
1 —0.72512101z7 ! 4+ 0.720924702 2
1 —0.552187642"" + 0.901688092 2

e Four second-order numerator sections are:
1422714 272

e H(1)=1/V1+ € = ko= 4.6258177 - 1074
o A. =67.83097 dB
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INVERSE CHEBYSHEV FILTER

e By applying the substitution z = (1 + s/c)/(1 — s/c)
with ¢ = 1.3763819 to the poles of the anaolg filter
given in transparency 25, we end up with the following
eight z-plane pole locations:

0.85730567 exp(+£350.450061207

0.60587226 exp(+£;0.46398940m
0.36738157 exp(+50.495042217
0.12866797 exp(+750.58295504

N’ N’ N NS

e Eight zeros of the digital filter are located on the unit
circle at |

exp(+70.605855597)
exp(470.654043427)
exp(=£50.755764007)
exp(+50.910361737)

e This filter can be implemented in the form of equation
(31) with R = 4.

e Four second-order denominator sections are:

1+ 0.0663079927" + 0.016555452 2

1 —0.011443732"1 + 0.134969222 2
1 —0.136793222"! + 0.367081202 2
1 —0.26789871z ! + 0.73497301 22
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e Four second-order numerator sections:
1+ 1.92122022271 + 272

1 + 1.439589092 1 4+ 2
1+ 0.930543692 ! 4+ 22
1+ 0.65291851z7 1 + 272

o H(1) =1 = ko =2.0941877 - 102
e A, =67.8310 dB



— 50 -

RESPONSE

1
O
—h
O
lllllllll’lllllllll

AMPLITUDE IN dB

-100 |-

-120 |-

-140 1 | I 1 | ] 1 | 1
0 0.2n 0.4xw 0.67 0.87 T

FREQUENCY




-5] -

MORE DETAILS

0 ........................ — 0
S o5l N
M =20F N g )
© o T S N
£ 5
o -40t @
:S u“-s _1 Bh oo N
i _60 ................................... 7))
£ g b NN
< %]
-80F e g “25F N
o
-100 : -3 :
0] 0.5 1 0] 0.5 1
Angular frequency omega/pi Angular frequency omega/pi
0.1 5
3
545
[=%
% 0'05 ............................................. E
£ 3 4
@ £
'5 0 .............................. 5,3 5
= [+}]
Q
£ o 3
< _0.05 ....................................... 8
<25
Yy . : : 5 : : : :
0 0.1 0.2 0.3 0.4 0 01 02 03 04
Angular frequency omega/pi Angular frequency omega/pi
Pole-zero plot
1 12
o’iOO 5 8
: [« %
Tt 05 % 10
] N x tu
Q le) : ]
> : x £ 8
E O ..... x .................... E‘
g o 5 3 ©
E o5 ; a
©. * S 4
_1 OO ,,,,, X o = X : !
: 2
-1 -05 0 05 1 0 01 02 03 04
Real part Angular frequency omega/pi
06 I 1 T l T T
g 04_ ........................................................................................ —
o
Q
3
Pd 02._ e A S —
Q :
0 :
S : :
= ¢ ?Th PP 00, 0000 0000E00000666066656666060666666606000
0.2 ; j 1 ; i .
10 20 30 40 50 60

n in samples



—52 -

ELLIPTIC FILTER

e By applying the substitution z = (1 + s/c)/(1 — s/c)
with ¢ = 1.3763819 to the poles of the anaolg filter
given in transparency 31, we end up with the following
six z-plane pole locations:

0.92644921 exp(+70.409742457)

0.75825817 exp(4,50.340613287)
0.57209956 exp(440.151699627)

e The six poles of the digital filter are located at
exp(=£750.608892797)

exp(+50.687623577)
exp(+;0.872761337)
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e This filter can be implemented in the form of equation
(31) with R = 3.

e Three second-order denominator sections:
1 — 1.016700722" + 0.32729791 22

1 —0.728025532~" + 0.57495546.2 2
1 —0.518381712"" + 0.858308142 2

e Three second-order numerator sections:
1+ 1.84233061z71 + 272

1+1.11178594z7 1 4+ » =2
1+ 0.670926262" 1 + 22

e H(1) =1/V1+ €2 = kg = 1.078595980 - 102
e A, =76.11092 dB.
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FREQUENCY TRANSFORMATIONS

e Up to now, we have considered only lowpass filters.

e Given a prototype lowpass filter transfer function
Hy,,(Z), there exist transformations converting this
prototype filter into another lowpass filter, a highpass
filter, a bandpass filter, or a bandstop filter.

e In all these cases, the desired transfer function is con-
structed as

H(z) = Hy(Z (32)

)‘Z_lzG(Z‘l)

e It is required that
e G(z7') must be a rational function of z~!

e The inside of the unit circle of the Z-plane
must map to the inside the unit circle of the
z-plane.

e The unit circle of the Z-plane must map onto
the unit circle of the z-plane.

e The most general transformation is of the following
allpass type

Z7h =G ==x]] v - il (33)
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LOWPASS-TO-LOWPASS TRANFORMATION

e The desired transformation is
1
27— o
7' =Gz} = )
(") 1 —az1

(34)

e Substituting Z = €Y and z = e/, we obtain, after
some manipulations,

w = arctan2((1 — @) sin 0, 2a + (1 + a?) cosh) (35)

or
= 2arctan2((1—a?) sinw, —2a+(1+a?) cos w‘), (36)
where
arctan(y/x), x>0
arctan2(y,z) = < arctan(y/z) +7, < 0andy >0
arctan(y/z) —m, x <0 and y <0.

37)

e If the passband edge of the prototype is ¢, and the
edge of the desired filter is w,, then

B sin[(9p — wp)/Q]
= 5in((6, T w,)/2] (38)

84

e The following two transparencies exemplify these re-
lationships for 6, = 0.257. For a = 1/2, a = 0, and
a = —1/2, w, achieves the values of 0.0876m, 0.257,
and 0.56867, respectively.
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Relations Between the Prototype Filter and

the Resulting Filter in the Lowpass-to-Lowpass
Transformation (instead of «a, a is used)

Transformed filters

1 .
_ a=-1/2
0.8} 0.8l
0.6} So6b _ _ _
?;,, | a=0
A | |
04 g 0.4 |
0.2] o2l /
- = =""a=1/2
0 . 0 X
0 =50 -100 0 0.5 1
Amplitude in dB theta/pi
0

Prototype filter
H_Ip(Z)

0.5 1
theta/pi
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Relations Between the Prototype Filter and

the Resulting Filter in the Lowpass-to-Lowpass
Transformation (instead of «, a is used)

Prototype filter H_Ip(2)

1 T
a=-1/2
0.8} 0.8
0.6} %0.6 a=0
©
0.4t S 0.4¢
0.2} 02f / A 7
a=1/2
0 : 0 ' —
0 =50 -100 0 0.5 1
Amplitude in dB omega/pi
I | I
0 ~ Trans-
| | [
@ 5ol | |  \ formed
£ : : : filters
§ —40r ! |
= I [ !
g -601 | !
< |
-80f 1 |
[ i |
-100— : —
0.5 1

omega/pi
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Example : Convert the elliptic design of pages
52-55 (0, = 0.47) to a filter with w, = 0.17

e In this case, a = 0.64203952.

e We end up with a filter with the following pole loca-

tions
0.97499633 exp(:I:jO. 10298475#)

0.92380565 exp(4-50.079873397)
0.88250858 exp(£50.102984757).

e The zero locations are:
exp(450.190836777)

exp(£;0.246669817)
exp(+70.523394417).

o w; = 0.18567, ko = 3.2987935 - 10~



RESPONSE

— 61 —

AMPLITUDE IN dB

-100

-120

-140

0.4n  0.6x
FREQUENCY

0.87



~62 -

LOWPASS-TO-HIGHPASS TRANFORMATION

e The transformation

_ _ 27—« |
Z7' =Gz = RSt (39a)

where
_ cos|(6p + wp) /2]

cos|(6, — wp) /2]
converts a prototype filter with passband edge at 6, to
a highpass filter with passband edge at wy,.

O =

(39b)

e Substituting Z = €/ and z = €/¥, we obtain, after
some manipulations,
w = m—arctan2((1—a?) sin @, 2a+ (14+a?) cos§) (40)
or

0 = pi — arctan2((1 — o*) sinw, —2a + (1 4+ a?) cosw),
(41)

e The following two transparencies exemplify these re-
lationships for 6, = 0.257. For a = 1/2, o = 0, and
a = —1/2, w, achieves the values of 0.9124m, 0.75m,
and 0.4314m, respectively.
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Relations Between the Prototype Filter and

the Resulting Filter in the Lowpass-to-Highpass
Transformation (instead of «, a is used)

Transformed filters

1 1 '
I R - >_a=1/2
o8t | 0.8F \ \.!
— |
0.6 S0.6; !
g a0
- - — - = - - - L — a=
0.4} g 0.4} |
|
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0— : 0 : :
0 -50 -100 0 0.5 1
Amplitude in dB theta/pi
0
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Amplitude in dB

0.5 1
theta/pi
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Relations Between the Prototype Filter and
the Resulting Filter in the Lowpass-to-Highpass
Transformation (instead of «, a is used)

Prototype filter H_Ip(Z)

1 ,
a=1/2
0.8} 0.8}
0.6} 2.0.6
3
[e)) =
0.4} £ 0.4} a=0
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EXAMPLE

e If the elliptic filter of pages 60 and 61 (6, = 0.17) is
used as a prototype filter and it is desired to design a
highpass filter with passband edge at w, = 0.9, then
a = 0 and the transformation is

Z =1

e The poles and zeros of the resulting filter are obtained
by changing the angles by m — ¢, where ¢ is the angle
of the prototype pole or zero.

o w, =1 — 0.18567m = 0.8144.

e Note that, in general, if it is desired to desigh a high-
pass filter with passband and stopband edges at w, and
ws the design can be performed as follows:

Step 1: Design a prototype lowpass filter with the same
passband and stopband requirements and having the
passband and stopband edges at

Hp:W_‘wP, 93:7{-_0}8.

Step 2: Convert this filter to the desired highpass filter
using the substitution 77! = —z1.
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LOWPASS-TO-BANDPASS AND LOWPASS-
TO-BANDSTOP TRANFORMATIONS

The transformation
7-1_ _ 27— [2ak/(k+ D]zt + [(E—1)/(k+1)]
(k=1)/(k+1)]z272—[2ak/(k+ 1)]z7t + 1

(42a)
where
o COS[(W;@?Z + wp1)/2]
“ = cosl(wp — )2 2
and
k = cot|(wp2 — wp1)/2] tan(6,/2) (42c¢)

converts a prototype filter with passband edge at 6, to
a bandpass filter with passband edges at w,; and wys.

e The transformation
22— 2a/(k+ )]z +[(1—k)/(k+1)]

Z = (L= k) /(k+ )]z — Rak/(k + D]z +1
(43a)
where cos[(wys + w1) /2]
* = cosl(@p — @) /2] (43)
and
k = tan|(wp2 — wp1)/2] tan(6,/2) (43c)

converts a prototype filter with passband edge at 6, to
a bandstop filter with passband edges at w,; and wys.
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Example : Convert the Chebyshev design of
pages 45-47 (0, = 0.47) to a bandpass filter with
wp1 = 0.371 and wp2 = 0.57

e In this case, a = 0.32491970 and k& = 2.236067977.

e We end up with sixteenth-order filter the following pole
locations

0.98569053 exp(=430.298359227)

(

0.98227710 exp(+50.502002127

0.95797336 exp(+;0.311304997)
0.94960368 exp(=450.485948447)
0.93315440 exp(£350.336912757)
0.92442018 exp(450.455616477)
0.91587579 exp(+50.373354237)
0.91212767 exp(4,0.415569377).

e Kight zeros are located at z = 1 and eight at z = —1.

o ky=3.2995443 - 1074
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Example : Convert the Chebyshev design of

pages 45-47 (0, = 0.47) to a bandstop filter with
wpr = 0.3 and wye = 0.57

e In this case, @ = 0.32491970 and k£ = 0.236067977.

e We end up with sixteenth-order filter the following pole
locations:

0.98609453 exp(£450.301788007)

0.98290980 exp(+50.497766467

0.94970250 exp(=£;0.289589237)
0.93677849 exp(£;0.512632917)
0.87333345 exp(+;0.257713827)
0.83185977 exp(£;0.552015607)
0.65411717 exp(+50.17585583)
0.50113082 exp(=;0.646028647).

e There are eight zero pairs at

exp(450.39466274).

o ko= 0.1189990.



- 71 -

RESPONSE

lll[flllllllllllll
]lJ!'llllllllllllll

AMPLITUDE IN dB

-100 » | -

-120 |- | | o

-140 ! i 1 | i ] i 1 ]
0 0.2n 0.4n 0.67 0.8 y|?

FREQUENCY




— 72—

Practical Design of Bandpass Filters

e For the lowpass-to-bandpass transformation the rela-
tion between 60, the frequency variable of the prototype
filter, and w, the frequency variable of the resulting fil-
ter, are related as

0 = f(w) = =7 + 2w + 2arctan2(y(w), z(w)), (44)
where
y(w) = [2ak/(k+1)]sin(w) — [(k — 1)/ (k + 1)] sin(2w),
r(w) = 1-[20k/(k+1)] cos(w)+[(k—1)/(k+1)] cos(2w),
and a and k are given by Egs. (42b) and (42c).

e The corresponding transformation guarantees that 0,
the passband edge of the prototype lowpass filter, are
mapped to wy and wyy, the edges of the bandpass filter.

e In order to achieve the desired performance in the stop-
band regions [0, wg] and [ws, 7], the stopband edge
of the prototype lowpass filter has to be

05 = min{|f(ws1)], f(ws2) }- (45)
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EXAMPLE: wy = 0.27, wp = 0.37, wye = 0.57, we =
0.6m, passband ripple = 0.1 dB, stopband ripple
= 60 dB

e Selecting 0, = 0.57, 8, = min{| — 0.7608~|,0.71137} =
0.71137.

e The following figure exemplifies the relations between
the prototype filter and the resulting bandpass filter.

Prototype filter H_Ip(Z)
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Practical Design of Bandstop Filters

e Lor the lowpass-to-bandstop transformation the rela-
tion between 6, the frequency variable of the prototype
filter, and w, the frequency variable of the resulting fil-
ter, are related as

0 = f(w) = 2w + 2arctan2(y(w), z(w)), (46)
where
y(w) = [2a/(k + 1)]sin(w) — [(1 — k)/(k + 1)] sin(2w),
r(w) =1-[2a/(k+1)] cos(w)+[(1—k)/(k+1)] cos(2w),
and o and £ are given by Eqgs. (43b) and (43c).

e The corresponding transformation guarantees that 6,
the pasband edge of the prototype lowpass filter, are
mapped to wy,; and wpy, the edges of the bandstop filter.

e In order to achieve the desired performance in the stop-
band region |ws;, wss], the stopband edge of the pro-
totype lowpass filter has to be

0, = min{ f(ws1), 27 — f(ws2)}. (47)



EXAMPLE: Wpl = 0.27'(', Wg1 = O.37T, Wg9 = 0.571', Wp2 =
0.6, passband ripple = 0.1 dB, stopband ripple
= 60 dB

e Selecting 0, = 0.57, 6, = min{0.78567, 2r—1.30817} =
0.69197.

e The following figure exemplifies the relations between
the prototype filter and the resulting bandpass filter.

Prototype filter H_Ip(Z)
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