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Part V.F: Cosine-Modulated Filter Banks

• This part shows how to efficiently implement a multi-

channel (M > 2) analysis – synthesis bank using a

single prototype filter and a proper cosine modulation

scheme.

• It is mostly based on the following article: T.

Saramäki, ”A generalized class of cosine-modulated fil-

ter banks,” in Transforms and Filter Banks.

Proceedings of First International Workshop on

Transforms and Filter Banks (Tampere, Finland),

edited by K. Egiazarian, T. Saramäki, and J. Astola,

pp. 336-365, 1998.
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Organization of This Pile of Lecture Notes

• This pile can be roughly divided into the the follow-

ing subparts:

1. Introduction

2. Cosine-modulated FIR filter banks

3. Nearly perfect-reconstruction filter banks

4. Perfect-reconstruction filter banks

5. Filter banks with constraints on the amplitude distor-

tion

6. Filter banks with constraints on both the amplitude

and aliasing distortions

7. Practical examples

8. Implementation aspects
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1. Introduction

• During the past ten years, the subband coding by

M -channel critically sampled FIR filter banks have re-

ceived a widespread attention [1], [2], [3] (see also refer-

ences in these textbooks).

• Such a system is shown in Fig. 1.

x(n) MH0(z) M F0(z)

MH1(z) M F1(z)

MHM-1(z) M FM-1(z)

y(n)

Figure 1: M -channel maximally decimated filter bank.

• In the analysis bank consisting of M parallel band-

pass filters Hk(z) for k = 0, 1, · · · , M − 1 (H0(z) and

HM−1(z) are lowpass and highpass filters, respectively),

the input signal is filtered by these filters into separate

subband signals.

• These signals are individually decimated by M , quan-

tized, and edcoded for transmission to the synthesis

bank consisting also of M parallel filters Fk(z) for k =

0, 1, · · · , M − 1.
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• In the synthesis bank, the coded symbols are con-

verted to their appropriate digital quantities, interpo-

lated by a factor of M followed by filtering by the cor-

responding filters Fk(z).

• Finally, the outputs are added to produce the quan-

tized version of the input.

• These filter banks are used in a number of commu-

nication applications such as subband coders for speech

signals, frequency-domain speech scramblers, image cod-

ing, and adaptive signal processing [1].

• The most effective technique for constructing both

the analysis bank consisting of filters Hk(z) for k =

0, 1, · · · , M − 1 and the synthesis bank consisting of fil-

ters Fk(z) for k = 0, 1, · · · , M − 1 is to use a cosine

modulation [1], [2], [3] to generated both banks from a

single linear-phase FIR prototype filter.

• Compared to the case where all the subfilters are de-

signed and implemented separately, the implementation

of both the analysis and synthesis banks is significantly

more efficient since it requires only one prototype filter

and a unit performing the desired modulation operation

[1], [2], [3].

• Also, the actual filter bank design becomes much

faster and more straightforward since the only parame-
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ters to be optimized are the coefficients of a single pro-

totype filter.

• Another alternative is to use the modified DFT [3].

• However, this is a very new idea lacking a good tuto-

rial article. Therefore, this alternative is not considered

in this course.

• The purpose of this pile of lecture notes is to in-

troduce efficient design techniques for generating pro-

totype filters for both perfect-reconstruction and nearly

perfect-reconstruction cases using a cosine modulation.

• Several examples are included illustrating that by al-

lowing small amplitude and aliasing errors, the filter

bank performance can be significantly improved.

• Alternatively, the filter orders and the overall delay

caused by the filter bank to the signal can be consider-

ably reduced. This is very important in communication

applications.

• In many applications such small errors are tolerable

and the distortion caused by these errors to the signal

is smaller than that caused by coding.
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2. Cosine-Modulated FIR Filter Banks

• This section shows how M -channel critically sampled

FIR filter banks can be generated using proper cosine-

modulation techniques and a proper prototype filter.

2.1 Input-Output Relation for an M-Cannel Fil-

ter Bank

• For the system of Fig. 1, the input-output relation in

the z-domain is expressible as

Y (z) = T0(z)X(z) +

M−1∑

l=1

Tl(z)X(ze−j2πl/M), (1a)

where

T0(z) =
1

M

M−1∑

k=0

Fk(z)Hk(z) (1b)

and for l = 1, 2, · · · , M − 1

Tl(z) =
1

M

M−1∑

k=0

Fk(z)Hk(ze−j2πl/M). (1c)

• Here, T0(z) is called the distortion transfer function

and determines the distortion caused by the overall sys-

tem for the unaliased component X(z) of the input sig-

nal.

• The remaining transfer functions Tl(z) for l =

1, 2, · · · , M−1 are called the alias transfer functions and

determine how well the aliased components X(ze−j2πl/M)

of the input signal are attenuated.
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• For the perfect reconstruction, it is reguired that

T0(z) = z−N with N being an integer and Tl(z) = 0

for l = 1, 2, · · · , M − 1.

• If these conditions are satisfied, then the output sig-

nal is a delayed version of the input signal, that is,

y(n) = x(n − N).

• It should be noted that the perfect reconstruction is

exactly achieved only in the case of lossless coding.

• For lossy coding, it is worth studing whether it is

beneficial to allow small amplitude and aliasing errors

causing smaller distortions to the signal than the cod-

ing or errors that are not very noticable in practical

applications.

• For nearly perfect reconstruction cases, the above-

mentioned conditions should be satisfied within given

tolerances.

• The term 1/M in Eqs. (1b) and (1c) is a conse-

quence of the decimation and interpolation processes.

• For simplicity, this term is forgotten in the sequel.

• In this case, the passband maxima of the amplitude

responses of the Hk(z)’s and Fk(z)’s will become ap-

proximately equal to unity.

• Also the prototype filter to be considered later on

can be designed such that its amplitude response has
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approximately the value of unity at the zero frequency.

• The desired input-output relation is then achieved in

the final implementation by multiplying the Fk(z)’s by

M .

• This is done in order to preserve the signal energy

after using the interpolation filters Fk(z).

• In this case, the filters in the analysis and synthesis

banks of the overall system become approximately peak

scaled, as is desired in many practical applications.
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2.2 Generation of Filter Banks from a Prototype

Filter Using Cosine-Modulation Techniques

• For the cosine-modulated filter banks, both the

Hk(z)’s and Fk(z)’s are constructed with the aid of a

linear-phase FIR prototype filter of the form

Hp(z) =

N∑

n=0

hp(n)z−n, (2a)

where the impulse response satisfies the following sym-

metry property:

hp(N − n) = hp(n). (2b)

• One alternative is to construct them as follows [2]:

Hk(z) = αkβkHp(ze−j(2k+1)π/(2M))+α∗
kβ

∗
kHp(zej(2k+1)π/(2M))

(3a)

and

Fk(z) = α∗
kβkHp(ze−j(2k+1)π/(2M))+αkβ

∗
kHp(zej(2k+1)π/(2M),

(3b)

where αk = ej(−1)kπ/4 and βk = e−jN(2k+1)π/(4M).

• The corresponding impulse responses for k = 0, 1, · · · ,
M − 1 are then given by

hk(n) = 2hp(n) cos[(2k + 1)
π

2M
(n − N

2
) + (−1)kπ

4
] (4a)

and

fk(n) = 2hp(n) cos[(2k + 1)π2M(n − N

2
) − (−1)kπ

4
]. (4b)
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• From the above equations, it follows that for k =

0, 1, · · · , M − 1

fk(n) = hk(N − n) (5a)

and

Fk(z) = z−NHk(z
−1). (5b)

• Another alternative is to construct the impulse re-

sponses hk(n) and fk(n) as follows [1]:

fk(n) = 2hp(n) cos[
π

2M
(k +

1

2
)(n +

M + 1

2
)] (6a)

and

hk(n) = fk(N−n) = 2hp(n) cos[
π

2M
(k+

1

2
)(N−n+

M + 1

2
)].

(6b)

• In [1], instead of the constant of value 2, the con-

stant of value
√

2/M has been used. The reason for

this is that the prototype filter is implemented using

special butterflies.

• The most important property of the above modula-

tion schemes lies in the following facts.

• By properly designing the prototype filter transfer

function Hp(z), the aliased components generated in

the analysis bank due to the decimation can be totally

or partially compensated in the synthesis bank.

• Secondly, T0(z) can be made exactly or approxi-

mately equal to the pure delay z−N .
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• Hence, these modulation techniques enable us to de-

sign the prototype filter in such a way that the re-

sulting overall bank has the perfect-reconstruction or a

nearly perfect-reconstruction property.
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2.3 Conditions for the Prototype Filter to Give a

Nearly Perfect-Reconstruction Property

• The above modulation schemes guarantee that if the

impulse response of

Ĥp(z) = [Hp(z)]2 =

2N∑

n=0

ĥp(n)z−n, ĥp(2N − n) = ĥp(n)

(7a)

satisfies (bxc stands for the integer part of x.)

ĥp(N) ≈ 1/(2M) (7b)

and

ĥp(N ± 2rM) ≈ 0 for r = 1, 2, · · · , bN/(2M)c, (7c)

then [4]

T0(z) =
M−1∑

l=0

Fk(z)Hk(z) ≈ z−N . (8)

• In this case, the amplitude error |T0(e
jω) − e−jNω| be-

comes very small.

• If the conditions of Eqs. (7b) and (7c) are exactly

satisfied, then the the amplitude error becomes zero.

• It should be noted that since T0(z) is an FIR fil-

ter of order 2N and its impulse-response coefficients,

denoted by t0(n), satisfy t0(2N − n) = t0(n) for n =

0, 1, · · · , 2N , there exists no phase distortion.

• Equation (7) implies that [Hp(z)]2 is approximately a

2Mth-band linear-phase FIR filter [5], [6].
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• Based on the properties of these filters, the stopband

edge of the prototype filter Hp(z) must be larger than

π/(2M) and is specified by

ωs = (1 + ρ)π/(2M), (9)

where ρ > 0.

• Furthermore, the amplitude response of Hp(z) achieves

approximately the values of unity and 1/
√

2 at ω = 0

and ω = π/(2M), respectively.

• As an example, Fig. 2 shows the prototype filter fre-

quency response for M = 4, N = 63, and ρ = 1 as

well as the responses for the filters Hk(z) and Fk(z) for

k = 0, 1, 2, 4.

• It is seen that the filters Hk(z) and Fk(z) for k =

1, 2, · · · , M − 2 are bandpass filters with the center fre-

quency at ω = ωk = (2k + 1)π/(2M) around which the

amplitude response is very flat having approximately

the value of unity.

• The amplitude response of these filters achieves ap-

proximately the value of 1/
√

2 at ω = ωk ± π/(2M) and

the stopband edges are at ω = ωk ± ωs.

• H0(z) and F0(z) [HM−1(z) and FM−1(z)] are lowpass

(highpass) filters with the amplitude response being flat

around ω = 0 (ω = π) and achieving approximately the

value 1/
√

2 at ω = π/M (ω = π − π/M).
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Figure 2: Example amplitude responses for the proto-
type filter and for the resulting filters in the analysis
and synthesis banks for M = 4, N = 63, and ρ = 1.

• The stopband edge is at ω = (2 + ρ)π/(2M) [ω =

π − (2 + ρ)π/(2M)].

• The impulse responses for the prototype filter as

well as those for the filters in the banks are shown in

Figs. 3 and 4, respectively.

• In this case, the impulse responses for the filtes in

the bank have been generated according to Eq. (4).

– 15 –

0 10 20 30 40 50 60
−0.05

0

0.05

0.1

0.15

n in samples

Im
pu

ls
e 

re
sp

on
se

Prototype filter

Figure 3: Impulse response for the prototype filter in
the case of Fig. 2.

• If Hp(z) satisfies Eq. (7), then both of the above-

mentioned modulation schemes have the very important

property that the maximum amplitude values of the

aliased transfer functions Tl(z) for l = 1, 2, · · · , M − 1

are guaranteed to be approximately equal to the max-

imum stopband amplitude values of the filters in the

bank [2], as will be seen in connection with the exam-

ples of Section 5.

• If smaller aliasing error levels are desired to be

achieved, then additional constraints must be imposed

on the prototype filter.

• This will be considered in the next section.

• In the case of the perfect reconstruction, the addi-

tional constraints are so strict that they actually re-

duce the number of adjustable parameters of the pro-

totype filter, as will be seen in Section 4.
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Figure 4: Impulse responses for the filters in the bank
in the case of Fig. 2.
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3 General Optimization Problems for the Proto-

type Filter

• This section states two optimization problems for de-

signing the prototype filter in such a way that the

overall filter bank possesses a nearly perfect-reconstruc-

tion property.

• Efficient algorithms are then briefly described for

solving these problems.

3.1 Statement of the Problems

• We consider the following two general optimization

problems:

Problem I. Given ρ, M , and N , find the coefficients of

Hp(z) to minimize

E2 =

∫ π

ωs

|Hp(e
jω)|2dω, (10a)

where

ωs = (1 + ρ)π/(2M) (10b)

subject to

1 − δ1 ≤ |T0(e
jω)| ≤ 1 + δ1, ω ∈ [0, π] (10c)

and

|Tl(e
jω)| ≤ δ2, ω ∈ [0, π] for l = 1, 2, · · · , M − 1.

(10d)
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Problem II. Given ρ, M , and N , find the coefficients of

Hp(z) to minimize

E∞ = max
ω∈[ωs, π]

|Hp(e
jω)| (11)

subject to the conditions of Eqs. (10c) and (10d).
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3.2 Algorithm for Solving Problem I

• This contribution concentrates on the case where N ,

the order of the prototype filter, is odd (the length

N + 1 is even).

• This is because for the perfect-reconstruction case N

is restricted to be odd, as will be seen in the following

section.

• For N odd, the frequency response of the prototype

filter is expressible as

Hp(Φ, ejω) =

2e−j(N−1)ω/2

(N+1)/2∑

n=1

hp[(N + 1)/2 − n] cos[(n − 1/2)ω],

(12a)

where

Φ = [hp(0), hp(1), · · · , h[(N − 1)/2] (12b)

denotes the adjustable parameter vector of the proto-

type filter.

• After some manipulations, Eq. (10a) is expressible as

E2(Φ) ≡ E2 =
(N+1)/2∑

µ=1

(N+1)/2∑

ν=1

hp[(N + 1)/2 − µ]hp[(N + 1)/2 − ν]Ψ(µ, ν),

(13a)
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where

Ψ(µ, ν) = 4

∫ π

ωs

cos(µ − 1/2) cos(ν − 1/2)dω

=





2π − 2ωs − 2 sin[(2µ − 1)ωs]
2µ − 1 , µ = ν

−2 sin[(µ + ν − 1)ωs]
µ + ν − 1 − 2 sin[(µ − ν)ωs]

µ − ν , µ 6= ν .

(13b)

• |Tl(Φ, ejω)| for l = 0, 1, · · · , M − 1, in turn, can be

written as shown in the article mentioned in the first

page of this part of lecture notes.

• To solve Problem I, we discretize the region [0, π/M ]

into the discrete points ωj ∈ [0, π/M ] for j =

1, 2, · · · , J0.

• In many cases, J0 = N is a good selection to arrive

at a very accurate solution.

• The resulting discrete problem is to find Φ to mini-

mize

ε = E2(Φ), (14a)

where E2(Φ) is given by Eq. (13) subject to

gj(Φ) ≤ 0, j = 1, 2, · · · , J, (14b)

where

J = b(M + 2)/2cJ0, (14c)

gj(Φ) = ||T0(Φ, ejωj)| − 1| − δ1, j = 1, 2, · · · , J0, (14d)
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and

glJ0+j(Φ) = |Tl(Φ, ejωj)| − δ2, l = 1, 2, · · · , bM/2c,
j = 1, 2, · · · , J0.

(14f)

• In the above, the region [0, π/M ], instead of [0, π],

has been used since the |Tl(Φ, ejω)|’s are periodic with

periodicity equal to 2π/M .

• Furthermore, only the first b(M + 2)/2c |Tl(Φ, ejω)|’s
have been used since |Tl(Φ, ejω)| = |TM−l(Φ, ejω)| for l =

1, 2, · · · , b(M − 1)/2c.
• The above problem can be solved conveniently by us-

ing the second algorithm of Dutta and Vidyasagar [7].

The details can be found in the article mentioned in

the first page of this part of lecture notes.

• Since the optimization problem is nonlinear in na-

ture, a good initial starting point for the vector Φ is

needed.

• This can be obtained by finding a corresponding vec-

tor in the perfect-reconstruction case to be considered

in the next section.

• If it is desired that |T0(Φ, ejω)| ≡ 1 [4], then the re-

sulting discrete problem is to find Φ to minimize ε as

given by Eq. (14a) subject to

gj(Φ) ≤ 0, j = 1, 2, · · · , J (15a)
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and

hl(Φ) = 0, l = 1, 2, · · · , L, (15b)

where

J = bM/2cJ0, (15c)

L = J0,

g(l−1)J0+j(Φ) = |Tl(Φ, ejωj)| − δ2, l = 1, 2, · · · , bM/2c,
j = 1, 2, · · · , J0,

(15d)

and

hl(Φ) = ||T0(Φ, ejωj)| − 1|, l = 1, 2, · · · , L. (15e)

• This problem can also be solved conveniently using

the Dutta-Vidyasagar algorithm.
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3.3 Algorithm for Solving Problem II

• To solve Problem II, we discretize the region [ωs, π]

into the discrete points ωi ∈ [ωs, π] for i = 1, 2, · · · , I.

• In many cases, I = 20N is a good selection. The

resulting discrete minimax problem is to find Φ to min-

imize

ε = Ê∞(Φ) = max
i∈I

fi(Φ) (16a)

subject to

gj(Φ) ≤ 0, j = 1, 2, · · · , J, (16b)

where

fi(Φ) = |Hp(Φ, ejωi)|, i = 1, 2, · · · , I (16c)

and J and the gj(Φ)’s are given by Eqs. (14c), (14d),

and (14e).

• Again, the Dutta-Vidyasagar algorithm can be used

to solve the above problem.

• Also, the optimization of the prototype filter for the

case where |T0(Φ, ejω)| ≡ 1 can be solved like for Prob-

lem I.

• Similarly, a good initial vector Φ is obtained by find-

ing a corresponding vector for the perfect-reconstruction

case.
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4. Perfect-Reconstruction Filter Banks

• This section introduces algorithms for designing effec-

tively the prototype filter for perfect-reconstruction fil-

ter banks either in the least-mean-square sense or in

the minimax sense.

• Both of these algorithms are characterized by the de-

sired property that they enable us to design banks of

filters with much higher lengths than the other existing

synthesis techniques.

4.1 Conditions for the Perfect Reconstruction

• Under certain conditions, the output of the filter

bank is a delayed version of the output. These con-

ditions are T0(z) ≡ z−N and Tl(z) ≡ 0 for l =

1, 2, · · · , M − 1 [8]–[14].

• In this case, N + 1 = 2KM with K being an integer

and only KbM/2c parameters are adjustable.

• In the sequel, the conditions for the prototype filter

are given in the form suggested in [13]. This form can

be used in a straightforward manner in optimizing the

prototype filter in the minimax or in the least mean-

square sense.

• The suggested form for the perfect reconstruction has

been derived by slightly modifying the conditions given

in [10].
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• In the following subsection, the connections of this

form to those described in [10], [11] will be given.

• The prototype filter transfer function as given by

Eq. (2) can be expressed as

Hp(z) = Gp(z)/(M
√

2), (17a)

where

Gp(z) = z−(KM−1/2)
KM∑

n=1

g(n)[z(n−1/2) + z−(n−1/2)]. (17b)

• Here, the hp(n)’s are related to the g(n)’s through

hp(n) = hp(2KM − 1 − n) =g(KM − n)/(M
√

2)

for n = 0, 1, · · · , KM − 1.
(18)

• The basic reason for expressing the prototype filter

transfer function in the above form lies in the fact

that the conditions for the perfect reconstruction can

be stated conveniently with the aid of the g(n)’s for

n = 1, 2, · · · , KM .

• First, these conditions imply that for M odd,

g((M + 1)/2) =
√

1/2 (19a)

and

g((M + 1)/2 + kM) = 0 for k = 1, 2, · · · , K − 1. (19b)

• For M even, this condition is absent.

– 26 –

• Second, there are K constraints for each of the re-

maining bM/2c sets of 2K g(n)’s.

• These sets are given by

Θr ={g(r), g(M + 1 − r), g(M + r), g(2M + 1 − r),

g(2M + r), g(3M + 1 − r), · · · , g((K − 1)M + r),

g(KM + 1 − r)} for r = 1, 2, · · · , bM/2c.
(20)

• For the rth set Θr, the conditions can be expressed

in a convenient manner in terms of

crk = cos(φrk) (21a)

and

srk = sin(φrk), (21b)

where the φrk’s for k = 1, 2, . . . , K are the basic ad-

justable parameters.

• To do this, the following (K − 1)th-order polynomials

in z−1 are first determined:

P (K)
r (z) =

K−1∑

n=0

pr(n)z−n (22a)

and

Q(K)
r (z) =

K−1∑

n=0

qr(n)z−n (22b)

recursively as

P (k)
r (z) = srkP

(k−1)
r (z) + crkz

−1Q(k−1)
r (z) (23a)
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and

Q(k)
r (z) = crkP

(k−1)
r (z) − srkz

−1Q(k−1)
r (z) (23b)

with the initializations

P (1)
r (z) = sr1 (23c)

and

Q(1)
r (z) = cr1. (23d)

• For K even, the desired conditions take then the fol-

lowing form:

g(2kM +r) = pr(
K

2
+k) for k = 0, 1, · · · , K

2
−1, (24a)

g((2k + 1)M + r) = qr(
K

2
+ k) for k = 0, 1, · · · , K

2
− 1,

(24b)

g(2kM +1− r) = pr(
K

2
−k) for k = 1, 2, · · · , K

2
, (24c)

and

g((2k − 1)M + 1 − r) = qr(
K

2
− k) for k = 1, 2, · · · , K

2
.

(24d)

• For K odd, they become

g(2kM + r) = qr(
K − 1

2
+ k) for k = 0, 1, · · · , K − 1

2
,

(25a)

g((2k−1)M+r) = pr(
K − 1

2
+k) for k = 1, 2, · · · , K − 1

2
,

(25b)

g(2kM +1−r) = qr(
K − 1

2
−k) for k = 1, 2, · · · , K − 1

2
,

(25c)
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and

g((2k + 1)K + 1 − r) =pr(
K − 1

2
− k)

for k = 0, 1, · · · , K − 1

2
.

(25d)

• The key point for using the φrk’s as the basic ad-

justable parameters lies in the fact that for any selec-

tion of these parameters the perfect-recontruction prop-

erty can be achieved.

• The zero-phase frequency response of the filter with

the transfer function Gp(z) can be written in terms of

the g(n)’s as

Gp(Φ, ω) = 2

KM∑

n=1

g(n, Φ) cos[(n − 1/2)ω], (26a)

where Φ is an KbM/2c length vector containing the

adjustable parameters φrk for r = 1, 2, · · · , bM/2c and

k = 1, 2, · · · , K, that is,

Φ = [φ11, φ12, · · · , φ1K, φ21, φ22, · · · , φ2K,

· · · , φbM/2c,1, φbM/2c,2, · · · , φbM/2c,K]. (26b)

• The above notations are used to emphasize the de-

pendences of g(n, Φ) and Gp(Φ, ω) on the basic ad-

justable parameters.
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4.2 Relations of the Proposed Adjustable Angles

to Those of Existing Implementation Forms

• There are very simple relations of the angles φrk

to the corresponding angles used by Malvar in [14]

and Koilpillai and Vaidyanthan in [10] for generating

perfect-recontruction cosine-modulated filter banks.

• For the angles considered in [14], denoted by θrk for

r = 0, 1 · · · , bM/2c − 1 and k = 0, 1, · · · , K − 1, the rela-

tions are given by

θr,2k = 3π/2−φr+1,K−2k for k = 0, 1, · · · , bK/2− 1c (27a)

and

θr,2k+1 = π/2 + φr+1,K−2k−1 for k = 0, 1, · · · , bK/2c − 1

(27b)

for K even.

• For K odd, the corresponding relations take the fol-

lowing form:

θr,2k = π/2 + φr+1,K−2k for k = 0, 1, · · · , bK/2c (28a)

and

θr,2k+1 = 3π/2 − φr+1,K−2k−1 for k = 0, 1, · · · , bK/2c − 1.

(28b)

• For the corresponding angles considered in [10], again

denoted by θrk for r = 0, 1 · · · , bM/2c − 1 and k =
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0, 1, · · · , K − 1, the desired relations have the following

simple form:

θr,k = π/2 − φr+1,k+1. (29)
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4.3 Optimization Problems

• We consider the following two optimization problems:

Problem A. Given M , K, and ρ, find the unknowns

φrk for r = 1, 2, · · · , bM/2c and k = 1, 2, · · · , K to mini-

mize

E2(Φ) =

∫ π

ωs

[Gp(Φ, ω)]2dω, (30a)

where

ωs = (1 + ρ)π/(2M). (30b)

Problem B. Given M , K, and ρ, find the unknowns

φrk for r = 1, 2, · · · , bM/2c and k = 1, 2, · · · , K to mini-

mize

E∞ = max
ω∈[ωs, π]

|Gp(Φ, ω)| (31)

• In the first case, the stopband energy of the pro-

totype filter is minimized, whereas in the second case

the maximum deviation of the amplitude response from

zero in the stopband region is minimized.
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4.4 Design Algorithm for Problem A

• For Problem A, the objective function can be ex-

pressed, after some manipulations, in the form

E2(Φ) =
KM∑

µ=1

KM∑

ν=1

g(µ, Φ)g(ν, Φ)Ψ(µ, ν), (32)

where Ψ(µ, ν) is given by Eq. (13b).

• The partial derivatives of E2(Φ) with respect to the

unknowns φrn r = 1, 2, · · · , bM/2c and n = 1, 2, · · · , K
are given by

∂E2(Φ)

∂φrn
= 2

KM∑

µ=1

KM∑

ν=1

ĝrn(µ, Φ)g(ν, Φ)Ψ(µ, ν), (33a)

where

ĝrn(µ, Φ) =
∂g(µ, Φ)

∂φrn
. (33b)

• Only the elements ĝnk((k − 1)M + r, Φ) and ĝ(kM +

r, Φ) for k = 1, 2, · · · , K are nonzero.

• The values of these elements can be determined with

the aid of the angles φrk for k = 1, 2, · · · , K like those

of the elements g((k − 1)M + r, Φ) and g(kM + r, Φ) for

k = 1, 2, · · · , K according to Eqs. (21)–(25).

• The only exeption is that for k = n crn = − sin(φrn)

and srk = cos(φrn).

• Knowing the partial derivates with respect to the

unknows, the optimum solution can be found in a
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straightforward manner using, for instance, the Fletcher-

Powell algorithm [15].

• The main advantage of the above formulation of the

optimization problem is the fact that when changing

the unknown angles during optimization, the overall fil-

ter bank is guaranteed to have all the time the perfect-

recontruction property without having additional con-

straints.
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4.5 Practical Filter Design for Problem A

• This subsection illustrates, by means of an example,

how to design effectively a cosine-modulated filter bank

for large values of K and M .

• It is desired to design a bank with M = 32 filters of

length N + 1 = 512 (K = 8) for ρ = 1.

• A very fast procedure to arrive at least at a local

optimum is the following (see Fig. 5):

Step 1: Optimize the prototype filter for M = 2, K =

8, and ρ = 1 using the initial values φ
(0)
1k = 0 for k =

1, 2, · · · , 8.

Step 2: Optimize the filter for M = 4, K = 8, and

ρ = 1 using the initial values φ
(2)
rk = φ

(1)
1k for r = 1, 2

and k = 1, 2, · · · , 8, where the φ
(1)
1k ’s are the optimized

parameters of the previous step.

Step 3: Optimize the filter for M = 8, K = 8, and

ρ = 1 using the initial values φ
(3)
rk = φ

(2)
1k for r = 1, 2

and φ
(3)
rk = φ

(2)
2k for r = 3, 4, where the φ

(2)
1k ’s are the

optimized parameters of the previous step.

Step 4: Optimize the filter for M = 16, K = 8, and

ρ = 1 using the initial values φ
(4)
rk = φ

(3)
1k for r = 1, 2,

φ
(4)
rk = φ

(3)
2k for r = 3, 4, φ

(4)
rk = φ

(3)
3k for r = 5, 6, and

φ
(4)
rk = φ

(3)
4k for r = 7, 8, where the φ

(3)
1k ’s are the opti-
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mized parameters of the previous step.

Step 5: Optimize the filter for M = 32, K = 8, and

ρ = 1 using the initial values φ
(5)
rk = φ

(4)
1k for r = 1, 2,

φ
(5)
rk = φ

(4)
2k for r = 3, 4, φ

(5)
rk = φ

(4)
3k for r = 5, 6, φ

(5)
rk =

φ
(4)
4k for r = 7, 8, φ

(5)
rk = φ

(4)
5k for r = 9, 10, φ

(5)
rk = φ

(4)
6k

for r = 11, 12, φ
(5)
rk = φ

(4)
7k for r = 13, 14, and φ

(5)
rk = φ

(4)
8k

for r = 15, 16. Here, where the φ
(4)
1k ’s are the optimized

parameters of the previous step.

• For the initial filter at Step 1, g(1) = 1 and g(n) = 0

for n = 2, 3, · · · , KM = 8.

• Correspondingly, hp(KM − 1) = hp(KM) = 1/(2
√

2)

and the remaining impulse response values are zero.

• This has turned out to be a good starting point fil-

ter at Step 1.

• The basic idea of performing Steps 2, 3, 4, and 5 as

described above lies in the fact that the transfer func-

tion obtained using the given initial values is express-

ible as

Hp(z) = H̃p(z
2)(1 + z−1)/2, (34)

where H̃p(z) is the transfer function optimized at the

previous step.
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Figure 5: Design a perfect-reconstruction prototype fil-
ter using a five-step procedure for M = 32, N +1 = 512,
and ρ = 1. The dashed and solid lines show the initial
and optimized responses, respectively.

• As seen from Fig. 5, this means that the amplitude

response of H̃p(z
2) is a frequency-axis compressed ver-

sion of that of H̃(z) in such a way that the interval
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[0, 2π] is shrunk onto [0, π].

• Therefore, it has an extra passband at ω = π. This is

partially attenuated by the term (1 + z−1)/2.

• After the optimization, the extra peak around ω = π

is attenuated.

• It is interesting to observe from Fig. 5 that as M is

increased, the term (1 + z−1)/2 provides a better atten-

uation and the initial filter becomes close to the opti-

mized one.

• The above procedure enables us to design very fast

at least suboptimum filters for very high values of K

and M compared to the case where the overall filter is

designed using only a one-step procedure.

• In the time domain, Eq. (34) means that the impulse

response of Hp(z) is related to that of H̃p(z) through

h̃p(2n) = h̃p(2n + 1) = hp(n)/2 for n = 0, 1, · · · , Ñp,

(35)

where Ñp is the order of H̃p(z).

• As seen from Fig. 6, the impulse response of the ini-

tial filter is obtained from the optimized impulse re-

sponse of the previous step in two steps.

• First, the impulse-response values are divided by two.

• Then, the resulting values are repeated two times, in-

creasing the length of the resulting filter by a factor of
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two.

• After the optimization, this impulse response becomes

smooth as seen from Fig. 6.

• Figure 7 shows in the perfect-reconstruction case the

prototype filter designed in the least-mean-square sense

as well as the filters in the bank for M = 32, N = 512,

and ρ = 1.

• Some characteristics of the resulting filter bank can

be found in Table I.

• In this table, the characteristics of the filter banks to

be considered later on will be collected.
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Figure 6: Impulse responses for filters involved when
performing Step 3 in the proposed five-step procedure.
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Table I: Comparison Between Various Banks of

M = 32 Filters for ρ = 1

• The filter length is N + 1 = 2KM

• Boldface numbers show the fixed values.

Design K N δ1 δ2 E∞ E2

L2 8 511 0 0 1.2 · 10−3 7.4 · 10−9

−∞ dB −58 dB

L∞ 8 511 0 0 2.3 · 10−4 7.5 · 10−8

−∞ dB −73 dB

L2 8 511 0.0001 2.3 · 10−6 1.0 · 10−5 5.6 · 10−13

−113 dB −100 dB

L∞ 8 511 0.0001 1.1 · 10−5 5.1 · 10−6 3.8 · 10−11

−99 dB −106 dB

L2 8 511 0 9.1 · 10−5 4.5 · 10−4 5.4 · 10−10

−81 dB −67 dB

L2 8 511 0.01 5.3 · 10−7 2.4 · 10−6 4.5 · 10−14

−126 dB −112 dB

L2 6 383 0.001 0.00001 1.7 · 10−4 2.8 · 10−10

-100 dB −75 dB

L2 5 319 0.01 0.0001 8.4 · 10−4 2.7 · 10−9

-80 dB −62 dB
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Figure 7: Least-squared perfect-reconstruction

bank of M = 32 filters of length N +1 = 8·2M = 512

for ρ = 1.
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4.6 Design algorithm for problem B

• For Problem B, an efficient synthesis scheme based

on the use of the Jing-Fam algorithm [16], [17] has

been described in [13].

• Alternatively, the problem can be solved by using the

Dutta-Vidyasagar algorithm.

• To do this, we we discretize the region [ωs, π] into

the discrete points ωi ∈ [ωs, π] for i = 1, 2, · · · , I.

• In many cases, I = 20N is a good selection.

• The resulting discrete minimax problem is to find Φ

to minimize

ε = Ê∞(Φ) = max
i∈I

fi(Φ), (36a)

where

fi(Φ) = |Gp(Φ, ωi)|, i = 1, 2, · · · , I. (36b)

• Figure 8 shows in the perfect-reconstruction case the

prototype filter designed in the minimax sense as well

as the filters in the bank for M = 32, N = 512, and

ρ = 1.

• Some characteristics of the resulting filter bank can

be found in Table I.

• As can be expected, the minimum stopband attenu-

ation of the prototype filter is significantly higher for

the minimax design compared to the least-squared de-
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sign (73 dB compared to 58 dB).

• However, for the least-squared design, the stopband

energy is considerably lower (7.4 · 10−9 compared to 7.5 ·
10−8).
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Figure 8: Minimax perfect-reconstruction bank

of M = 32 filters of length N + 1 = 8 · 2M = 512

for ρ = 1.
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5 Filters with Small Amplitude Distortion |T0(e
jω)|

• Filters with very small aliasing errors can be synthe-

sized by allowing a small amplitude distortion |T0(e
jω)|

for high-order filters.

• This is illustrated in Figs. 9 and 10 for the M = 32,

N + 1 = 512, and ρ = 1 case, where δ1 = 0.0001.

• Figure 9 shows the amplitude responses of the least-

squared-error prototype filter and the corresponding fil-

ter bank as well as the amplitude response of T0(z) −
z−N and the worst-case aliased term Tl(z).

• The corresponding results for the minimax design are

shown in Fig. 10.

• These filters have been optimized without considering

the aliasing errors.

• When comparing these responses with those of Figs. 7

and 8, it is seen that the attenuations of both the pro-

totype filter and the filters in the bank have been im-

proved approximately by 40 dB at the expense of very

small aliasing errors and a very small amplitude distor-

tion (see also Table I).

• For the least-squared design, δ2 = 2.3 · 10−6 (113 dB)

and for the minimax design, δ2 = 1.1 · 10−5 (99 dB)

• By allowing a larger value for δ1, both the filter

– 46 –

bank performance is improved and the aliasing errors

become smaller.

• This is illustrated in the least-mean-square case in

Figs. 11 and 12 for δ1 = 0 and δ1 = 0.01, respectively.

• It is seen from Table I that for the perfect-reconstruc-

tion filter as well as for the filters with δ1 = 0, δ1 =

0.0001, and δ1 = 0.1 the mininimum stopband attenu-

ations (the stopband energies) of the prototype filters

are 58 dB, 67 dB, 106 dB, and 112 dB, respectively

(7.4 · 10−9, 5.4 · 10−10, 5.6 · 10−13, and 4.5 · 10−14, respec-

tively).

• The corresponding minimum stopband attenuations of

the worst-case aliased transfer functions are ∞ dB, 81

dB, 113 dB, and 126 dB, respectively.
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Figure 9: Least-squared bank of M = 32 filters of

length N +1 = 8 ·2M = 512 for ρ = 1 and δ1 = 0.0001.
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Figure 10: Minimax bank of M = 32 filters of

length N +1 = 8 ·2M = 512 for ρ = 1 and δ1 = 0.0001.
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Figure 11: Least-squared bank of M = 32 filters

of length N + 1 = 8 · 2M = 512 for ρ = 1 and δ1 = 0.
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Figure 12: Least-squared bank of M = 32 filters

of length N+1 = 8·2M = 512 for ρ = 1 and δ1 = 0.01.
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6 General Examples

• This section illustrates, by means of two examples,

the flexibility of the general design technique for reduc-

ing the lengths of the filters in the bank to achieve

practically the same filter bank performance as with

the perfect-reconstruction filter banks.

• For both examples, M = 32, ρ = 1, and the least-

mean-square criterion is used for optimizing the proto-

type filter.

• For the first example, N + 1 = 384 (K = 6), δ1 =

0.001, and δ2 = 10−5 (a 100-dB attenuation).

• For the second example, N + 1 = 320 (K = 5), δ1 =

0.01, and δ2 = 10−4 (a 80-dB attenuation).

• Responses for the optimized filters are shown in

Figs. 13 and 14, respectively.

• As seen from Table I (or by comparing Figs. 13

and 14 with Fig. 7), these two optimized prototype fil-

ters provide a better filter bank performance than the

perfect-reconstruction filter band with N + 1 = 512

(K = 8).

• The main advantage of the above two filter banks

is that the delays caused by them are 383 samples

and 319 samples, respectively, compared to 511 samples

caused by the perfect-reconstruction filter bank equiva-
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lent.

• These figures are directly the orders of the prototype

filters.
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Figure 13: Least-squared bank of M = 32 filters

of length N + 1 = 6 · 2M = 384 for for ρ = 1, δ1 =

0.001, and δ2 = 0.00001.
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Figure 14: Least-squared bank of M = 32 filters

of length N+1 = 5·2M = 320 for for ρ = 1, δ1 = 0.01,

and δ2 = 0.0001.
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7. Implementation Aspects

• The most effective way of implementing cosine-

modulated filter banks has been proposed by Malvar in

[1] and [11].

• In this implementation, the protype filter in both the

analysis and synthesis part is implemented at the lower

sampling rate using special butterflies.

• The cosine modulation is implemented using a DCT

IV block.

• In the next version of this pile of lecture notes, more

details are included.
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