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DESIGN OF FIR FILTERS USING IDEN-
TICAL SUBFILTERS AS BASIC BUILDING
BLOCKS

e The cost of implementation of an FIR filter can
be reduced by designing it by interconnecting a
number of identical subfilters with the aid of a

few additional adders and multipliers.

e The main advantage of using identical copies of
the same filter lies in the fact that with this ap-
proach it is relatively easy to synthesize selective

FIR filters without general multipliers.

e This material is based on T. Saramaki, ”Fi-
nite impulse reponse filter design”, Chapter 4 in
Handbook for D:igital Signal Processing, edited
by S. K. Mitra and J. F. Kaiser, John Wiley and
Sons, New York, 1993, Section 4-12.

e This pile of lecture notes contains some additional

material compared to the above-mentioned article.



IN

Filter Structures

e The ’building block (subfilter) Fis(z) is a Type I fil-

ter of order 2M:

2M
Fuy(z) =) flnlz™,  fI2M —n] = f[n].
n=0

e The first structure is used for the design purposes

and the second one for the implementation pur-

poses.
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Filter Frequency Response

The use of the extra delay terms 2z~ guaran-

tees that the overall frequency response has linear

phase and is expressible as

H(e) = e "M I (W),

where
H(w) = a[n][Fu(w)]"
with -

Fy(w) = f[M] —I—QZf[M——n] COS NWw.

n=0
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Conditions for the Tap Coefficients and Sub-
filter

e The tap coefficients a[n| and Fj;(z) can be deter-

mined such that H(w) meets

1-46, < Hw)<1+§, for welX,
-, < Hw) < §, for we X,.

e X, and X, may consist of several bands.
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Simultaneous Specifications

e Since H(w) can be obtained from the polynomial

N
P(z) = Z aln]z"
n=0
using the substitution
r = Fy(w),

the general simultaneous conditions for the a[n]’s

and Fjs(z) can be stated as

1-0, < P(z) <149, for z, <z <zp
—0s < P(z) <4, for zg <2< x40

) < xpy for we X,

)

< xge for we X,.

e The figures in the following three transparencies
exemplify these relations in three different cases

to be considered in more details later.
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Example 1: Design of a composite filter using
four prescribed subfilters. z,; = 0, x, = 0.1549,
zp1 = 0.9706, and =z, = 1.0488 are determined
by the subfilter. w, = 0.057, w, = 0.17, ¢, = 0.01,
and 6, = 0.001.
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Example 2: Case A Simultaneous Specifica-
tions: =z = -1, xp»p = 1. x5 = -—0.6318,
Tp1 = 0.4493, wp, wp = 0.5 £ 0.27, wy, wgp =
0.5m & 0.21wr, N = 8 subfilters, 6, = 0.01, and
0y = 0.0001.

X

N TT T T T T T 7717 1.0000
L = -

<
» Z _
- i {1 0.4493 |

1.01 0.99
- — x=Fpy(w) -
e  -0.6318F-5--5------—-——-H-— =i~ T

| _1_OOOO|mA/|V\MW|I|I|W\]I\MMN

0 -40 -80 0O 0271 04w 0.6n 0.8r = O
IP(X)I in dB
1 T 1 T 1 T 7T 1
LIN. AMP.
1.01
0 i
o) 0.99
c or B
— 20 |- -
7~ — -
S -40 -
I 60| .
-80
-120 iy 1 4 | ||||||||| ]”l"
0 02n 04t 0.6 0.8 =m® O



- 8 -

Example 3: Case B Simultaneous Specifica-
tions: xz,, x,p =1= gp, Tsl, Tgo = 55. gp = 0.1787,

6, = 0.1195, N = 8 subfilters. w, = 04n, w, =
0.4027, 6, = 0.01, and 6, = 0.0001.
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Interpretations

If these conditions are satisfied, then x = Fy(w)
converts the desired passband behavior of P(x) on
[Zp1, Tp2] (oscillations within the limits 1 £ 6,) onto
the passband region X, of the overall filter. Sim-
ilarly, the desired stopband behavior of P(x) on

[€s1, Ts2] is converted onto the stopband region X,.

Hence, the amplitude values are preserved and

only the argument axis is changed.

Alternatively, P(x) can be interpreted as an am
plitude change function, which tells that if the
subfilter response Fj;(w) achieves the wvalue g,
then the overall response H(w) achives the value

P(zy) without regard of the frequency.
The passband and stopband regions of Fj;(w) and

H(w) are the same.

All that happens is that the multiple use of the
same subfilter reduces the large passband and

stopband variations in Fj(w) to small variations

in H(w).
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Basic Problems

e Problem I: Given N, the number of subfilters,
optimize the a[n|’s [or, equivalently, P(x)] and
Fy(z) to meet the given criteria with the mini-

mum subfilter order 2M.

e Problem II: Given Fj(z), optimize the an]’s to
meet the given criteria with the minimum value of

N.
e In addition to these problems, Fj(z) and P(x)

can be optimized to minimize N, the number of

subfilters, for the given subfilter order 2M.

e Also, the subfilter order can be minimized for the
given N and the given values of the a[n]’s, like in

the Kaiser-Hamming approach.
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Three Different Simultaneous Specifications

For Problem II, the parameters x,, z,2, =5, and
rsy are fixed and determined by Fy(z) (see Ex-

ample 1 in transparency 6).

For Problem I, these parameters are adjustable
and their number can be can be reduced from

four to two in the following two useful ways:

Case A: 74 = —1, zpp = 1; x5 and x4 are ad-
justable.
Case B: w4y = —0;, Tso = 05, Tp1 = 1 — O, Tpo =

1+ gp; gp and 8\8 are adjustable.

Case A is beneficial when the subfilter is a con-
ventional direct-form design: the subfilter is au-
tomatically peak scaled with the maximum and
minimum values of Fj/(w) being +1 and —1, re-

spectively (see Example 2 in transparency 7).

In Case B, the subfilter criteria are conventional
with passband ripple of gp and stopband ripple of

gp (see Example 3 in transparency 8).
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Tap Coefficients for the Second Overall Struc-

ture

e The additional tap coefficients in the second over-
all structure of transparency 2 can be obtained
by factoring the polynomial P(z) into the second-

order and ﬁrst—order terms as
Ny

on bx 212+ by 1+ [0]) T fexl Lo+ ce[0]]

k=1

where

2N+ Ny = N.

e The advantages of this structure compared to the

—M  can be

first one are that the extra delays z
shared with the subfilter F);(z) and its sensitivity

to variations in the tap coefficients is lower.

e Later on, it will be shown how P(x) can be de-

signed directly in the above form.
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Filter Optimization

e F'or the above problems, the design of P(x) can
be accomplished conveniently with the aid of an

FIR filter using the substitution
x=acos)+

in P(x), yielding
N
G(Q?) = P(lacosQ+ () = Zg[n] cos" (2,

n=0

gln] = ia[r] (M)arsr. (4

e Being expressible as an N-th degree polynomial in

where

cos(), G(§2) is the zero-phase frequency response
of a Type I linear-phase FIR filter of order 2N
and can be designed using standard FIR filter de-
sign algorithms (see the lecture notes on Digital

Filtering II, especially the handbook chapter).
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e These algorithms give the impulse-response coeffi-
cients g[n| of the corresponding filter.

o (G(2) can be expressed as G(Q2) = g[N]+2 2521 g[N—
n]cosnf) which can be rewritten in the desired
form using the identity cosn) = T,(cos(?), where

T,(z) is the n-th degree Chebyshev polynomial.
e On page 17 it will be shown how P(x) can be

generated based on the impulse response as well
as the zero locations of the corresponding FIR fil-

ter.



By selecting

a=(Tp2—Ts1)/2, B = (Tp2+xs1)/2,

the z-plane regions |[z,1,zy] and [xg,zs] are
mapped, respectively, onto the ()-plane regions

0,9,] and [Qs, 7], where (see the figure in the fol-

lowing transparency)

237]91 — Lp2 — msl}

Q, = cos'| , Qs =cos ']

Lp2 — Tsl Lp2 — Ts1
and the conditions for P(z) can be expressed in

terms of G(Q2) as
1-6, <G) <149, for 0 <O <Q,
—0s < G(Q2) < §; for Q, < Q< .
G (2) meeting these conventional lowpass specifica-

tions can then be converted back into the polyno-

mial P(z) using the substitution

cos) = [z — f]/a.

The resulting tap coefficients a[n] can be deter-

mined from the g[n|’s according to Eq. (A).

2T59 — Tpo — wsw
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Design of the polynomial P(x) with the aid of
an FIR filter response G({2) for the given z,,

Ts2, Tp1, and xp and for the given §, and ;.
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How to Find P(z) Conveniently in the Cas-

cade Form

o Let the transfer function G(z) satisfying the con-

ditions given on page 15 be of the form

G(z) = ) _glnlz™", 32N —n] =gln].

n=0
e This G(z) is factorizable as

G(z) = g[0]G1(2)Ga(2)G3(2),

where
M,

Gi(z) = H(l — [2(ry + -%) cos 0]z~
k=1

1
+ [ri + = + 4cos” O]z
Tk
1
— [2(ry + —) cos Hk]z_?’ + z_4),

k=1 "k
Ms3

Gs(z) = H(l —[2cos Bzt + 272).
k=1

e Here 2M1+M2+M3:N.
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e GG1(z) contains M; zero quadruplets at z = rie
and z = (1/ry)et% for k=1,2,---, M.

e G5(z) contains M, reciprocal zero pairs on the
real axis at 2 =7y, 1/ for k=1,2,---, Mo>.

e (GG3(z) contains M3 zero pairs on the unit circle at

2 = =% for k=1,2,---, Ms.

e The corresponding zero-phase frequency response

is expressible as
G(Q) = g[0]G1(Q2)G2(2)G3(9),

where

M
1
G1(Q2) = H(2 cos 22 — [4(ry + 7—;—) cos O] cos §2
k
k=1

1
+ [rf + = + 4 cos” 0)),

Tk
M, |
G2(QQ) = H(Q cos Q) — [y, + ?—]),
k
k=1
M3
G3(Q) = [ [(2cos Q2 — [2cos B4)).
k=1
e Alternatively, (2cos2Q = 4cos’Q — 2)

My
G1(Q) = 92M; l_I(cos2 QO + ajcos Q) + b),
k=1



and

where

and

e Hence,

where

M,
Go(Q) = 22 H(cos Q + dy),

k=1
Ms
G3(Q) = oMs H(Cos Q+ep),
k=1
1
ar = — (7 + —) cos Oy,
Tk

1
by = (T]%+—§)/4+C0829k - 1/27

Tk
. 1
dk = “(’rk + T)/27
Tk
e = — cos Oy
Ny
=C | [[bx[2] cos® @ + bi[1] cos € + b [0]] X
k=1
Ny
H[’c\k[l] cos §2 + ¢ [0]],
k=1
6 — 2N/g\[0]7



L
Ny = My + Ms,
b2l =1 for k=1,2,---, Ny,
/l;k[l]:ak for k=1,2,---, Ny,
/l;k[O]::bk for k=1,2,---, NNy,
cll]=1 for k=1,2,---,Ns,
cxl0l =di for k=1,2,---, Mo,
and

/C\k[()] = €k—M, for k=My+1, My+2,---, No.

The unscaled P(z) obtained from G(2) using the

substitution
cosQ) =[x — []/«
is then
Ny N
P(z) = C | [[be[2]&®+be[L]x+bx[0]] | [lcx[1)z +ci[0]],
k=1 k=1
where

C=C/a"
bp[2] =1 for k=1,2,---, Ny,

AN

bp[1] = abi[l] =28 for k=1,2,---, Ny,
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bk[o] — a2/b\k[0] _ /Ba/b\k’[l] + /82 for k= ]-7 27 T 7N17
ckl]l] =1 for k=1,2,---, Ny,

and

ck[0] = acy[0]— B for k=1,2,---, N.
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Example

e This example illustrates how multiplier-free filters
can be designed by first determining a computa-
tionally efficient subfilter with higher ripple values
than the required ones and then using the addi-

tional tap coefficients to reduce these ripples to

the desired level (Problem II).

e Consider the specifications: w, = 0.05m, w, = 0.17,

5, =0.01, and 6, = 0.001.

e For narrowband cases of this kind, a particularly

efficient subfilter transfer function is of the form:

1— K2
T e+ d(1+ 27,

where 27F  with P integer-valued, is a scaling

multiplier and M =3K/2 — 1.

Fu(z) =[27"

e An efficient implementation of this transfer func-

tion is depicted in the following transparency.
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An implementation of the proposed subfilter

Out

e If modulo arithmetic (e.g., 1’s or 2’s complement
arithmetic) and the worst-case scaling 27 < 1/K
(corresponds to peak scaling in this case) are used,
the outputs of the first two blocks in the above fig-
ure are correct even though internal overflows may

occur.

e This implementation is very attractive as, in this
case, the system does not need initial resetting and
the effect of temporary miscalculations vanishes au-

tomatically from the output in a finite time.
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Optimization of the Additional Tap Coefli-

clents

By selecting K =16, P=4, c= 2, and d = —271,
the resulting subfilter requires no general multi-
pliers and Fjs(w) varies within z,; = 0.9706 and
Ty, = 1.0488 on [0,w,] and within x5 = 0 and
Tso = 0.1549 on [ws, 7] (see Example 1 in trans-
parency 6 as well as transparency 26).

Using the above procedure, o = 3 = 0.5244 and
the edges of G(Q2) become 2, = 0.17617 and ; =
0.74897 (see transparency 16).

The minimum even-order 2N to meet the result-
ing criteria is 8 so that the required number of

subfilters is NV = 4. See transparency 27.

The impulse-response coefficients for this proto-
type filter G(z) are g[0] = g[8] = —0.01875, g[1] =
g7l = —0.03892, g[2] = g[6] = 0.05492, g¢[3] =
gl5] = 0.28811, g[4] = 0.42547. See transparency
28.

The zeros of this filter are located at z = 0.3741,



1/0.3741 (reciprocal zero pair on the unit circle),

+0.75827 +0.82657 +0.93797

z =e , 2 = € ,and z = € See

transparency 29.

In this case, Ny =0, Ny =4, C = —0.3001, [0] =
—1.5237, ¢5|0] = 0.7251, ¢3[0] = 0.8551, and ¢;[0] =
0.9810,

The corresponding polynomial P(z) contains thus
only first-order sections.

By fixing ¢x[l] = 1 for k£ = 1,2,3,4 to take the
value of unity (like in the procedure described on
pages 17-21), C and the coefficients c;[0] = 1
for £ = 1,2,3,4 take the infinite-precision values

shown in the table of transparency 30.
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Zero-phase frequency response for the example

subfilter

Subfilter response
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. Xp2=1.049
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Amplitude response for the FIR prototype fil-

ter G(z2)
Response for the prototype filter G(Omega)
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Impulse response
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Impulse response for the FIR prototype filter
G(z)

Impulse response for the prototype filter
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Zero-plot for
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the FIR prototype filter G(z)

Zero-plot for the prototype filter G(z)

1.5

0.5

Imaginary part
o

-1.51

-4 - - - - -

Real part

1.5

2.5




- 30 -

Infinite and Quantized Tap Coefficients

TABLE 4-11 Tap Coefficients for the Filter of Example 4.19

Infinite-Precision Coefhicients
1] = ¢, [0] = —0.009995
¢, [0] = —0.075844

c3[0] = —0.144123

1
e[1] = 1
1
1 c;[0] = —1.323373

C = —3.967595

Quantized Coefficients

0] =0

c,[0] = -27°

0] = =277 —27°
[0 = =20 -2 -274

R)

N

pr—

ey

N
Pt et et e
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The given criteria are still met when these coef-
ficients are quantized to the easily implementable
values shown in the table of the previous trans-

parency. See transparencies 32 and 33.

The resulting composite filter requires no general
multiplications, making it very useful for hardware

or VLSI implementation.

The responses of transparency 6 are for this over-

all design.

In the following transparencies you can find a
Matlab-file, called exal9.m, for performing the
above synthesis (study it carefully and try it).



Amplitude

Amplitude in dB
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Responses for the quantized and unquantized

P(z). Stopband region is [0, 0.1549] and the
passband region is [0.9706, 1.0488].

Response for P(x): solid and dashed line for quantized and unquantized P(x)s
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Amplitude
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Responses for the overall filter with quantized

and unquantized additional tap coefficients

Overall filter: solid and dashed lines for quantized and unquantized P(x)s
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%Matlab-file exa19.m for solving the problem
%4.19 in T. Saram"aki "Finite impulse response
Y%filter design" in Handbook for Digital Signal
%Processing, edited by S. K. Mitra and J. F. Kaiser,
%dJohn Wiley & Sons, 1993.

%

%can be found in SUN's: ~ts/matlab/sldsp/exa19.m
%

%ldentical FIR Subfilters

%

rrs=ones(1,16)/16;

a(1)=-1/2;a(17)=-1/2;

a(9)=2;

f=conv(rrs,rrs);

f=conv(f,a);

%

%Passband and stopband maxima and minima
%of the zero phase frequency response

%

[H,z]=zeroam(f,.0,.05,4000);
xp2=max(H);xp1=min(H);
[H,z]=zeroam(f,.1,1.,4000);
xs2=max(H);xs1=min(H);
[H,z]=zeroam(f,.0,1.,4000);

figure(1)

plot(z/pi,H);grid;title('Subfilter response’);
ylabel('Zero-phase frequency response');
xlabel('Angular frequency as a fraction of pi');
text(.22,1.1,['xp2="',num2str(xp2)])
text(.22,.9,['xp1=",num2str(xp1)])
text(.22,.7,['xs2="',num2str(xs2)])
text(.22,.5,['xs1=",num2str(xs1)])
u(1)=.0,y(1)=0;

%Determine G(Omega); alpha and beta from
%equation (4.196), Omega_p and Omega_s
%from equation (4.197)

figure(2)
alpha=(xp2-xs1)/2;beta=(xp2+xs1)/2;
den=xp2-xs1;
Omegap=acos((2*xp1-xp2-xs1)/den)/pi;
Omegas=acos((2*xs2-xp2-xs1)/den)/pi;
plot(u,y);axis([0 100 0 100});



text(20,80,['alpha=",num2str(alpha)])
text(20,60,['beta=",num2str(beta)])
text(20,40,['Omegap=",num2str(Omegap),'pi'])
text(20,20,['Omegas=",num2str(Omegas),'pi'])
%Minimum even order of G(z) to meet the resulting
Y%criteria is 8, that is, we need 4 subfilters
g=remez(8,[0 Omegap Omegas 1], [1 1 0 0],[1 10]);
[HH,z]=zeroam(g,.0,1.,4000);

figure(3);subplot(211)
plot(z/pi,20*log10(abs(HH)));axis([0 1 -90 10]); grid;
title('Response for the prototype filter G(Omega)");
xlabel('Angular requency as a fraction of pi');
ylabel('Amplitude in dB")

%Passband details
subplot(212);plot(z/pi,(HH)),grid;axis([0 Omegap .99 1.01]);
title('Passband details');

xlabel('Frequency as a fraction of pi'); ylabel('Amplitude’)
figure(4)

impz(g);

title('Impulse response for the prototype filter');
xlabel('n in samples'); ylabel('Impulse response')
figure(5)

zplane(g);

title("Zero-plot for the prototype filter G(z)');

%Express G(z) in the form
%G(z)=g(0)[1+al1*2\-1)+z/(-2)][1+a2*zN(-1)+2\(-2)]*
%[1+aB3*zM(-1)+z/(-2)]"[1+ad*zN-1)+2/\(-2)]

%How to do this? g(0) is value of the impulse response
%of G(z) at n=0. In Matlab g(1). The zeros of G(z) are located at
%z=r, 1/r, with r_1=0.3741, and z=exp(+-theta_k)

%for k=2,3,4 with theta_2=0.8265pi, theta_2=0.8265pi,
%theta_4=0.8265pi,

%Then, al=-(r+1/r), a_k=-2cos(theta_k), k=2,3,4
zer=roots(g);

[Y l]=sort(-real(zer));

zer=zer(l);

%gives the following zeros

Y%zer =

%

% 2.6733

% 0.3741

% -0.7251 + 0.6886i



% -0.7251 - 0.6886i

% -0.8551 + 0.5185i

% -0.8551 - 0.5185i

% -0.9810 + 0.1938i

% -0.9810 - 0.1938i

r=zer(2);

al=-(r+1/r);

theta2=acos(real(zer(3)))/pi;

a2=-2*cos(pi*theta2);

theta3=acos(real(zer(5)))/pi;

a3=-2*cos(pi*thetald);

thetad=acos(real(zer(7)))/pi;

a4=-2*cos(pi*theta4);

%Factorized zero-phase response G(Omega) is obtained
%by using the substitution 1+z/(-2)==2*cos(Omega), and
%z~ (-1)==1. Note that the delay term is totally diregarded.
%We obtain G(Omega)=G0[cos(Omega)+G1]*[cos(Omega)+G2]*
%[cos(Omega)+G3]*[cos(Omega)+G4], where G0=8g(0) and
%G_k=a_k/2 for k=1,2,3,4.

GO0=(27)*g(1); %-0.3001

G1=a1/2; % -1.5237

G2=a2/2; % 0.7251

G3=a3/2; % 0.8551

G4=a4/2; % 0.9810

%Now the desired P(x)=G([x-beta/alpha]) [equation (4.199)], giving
%P (X)=PO[x+P 17" [x+P2]*[x+P3]*[x+P4], where P0=G0/(alpha’4),
%Pk=alpha*Pk-beta for k=1,2,3,4.

PO=GO0/(alpha™4); %-3.9674

P1=alpha*G1-beta; %-1.3234

P2=alpha*G2-beta; %-0.1441

P3=alpha*G3-beta; %-0.0760

P4=alpha*G4-beta; %-0.0099

o,

figure(6)

plot(u,y);axis([0 100 0 100));

text(3,95,'zeros of G(z) are located at z=0.3741, 1/0.3741)
text(3,87.5,'z=exp(+-j0.7582pi), z=exp(+-j0.8265pi),z=exp(+-
j0.9379pi)")
text(3,80,'G(z)=-0.0188*[1-3.0473z\(-1)+z(-2)]"[1+1.4503z/\(-
1)+2(-2)[")

text(13,72.5,T1+1.71072/\(-1)+2M(-2)]*[1+1.96 19z (- 1)+z/(-2)])



text(3,60,'G(Omega)=-0.3001[cos(Omega)-
1.5237]*[cos(Omega)+0.7251]")
text(13,52.5,[cos(Omega)+0.8551]*[cos(Omega)+0.9810])
text(3,45,'P(x)=-3.967595*[x-1.3234]*[x-0.1441]*)
text(13,37.5,'[x-0.0760]*[x-0.0099]"

text(3,30,'Qunatized P(x)=-2/2*[x-2"\0-2/\(-2)-2/M-4)]*[x-2/\(-3)-2/\(-
6)1)

text(13,22.5, [x-2/(-4)]*[x-0]")

x=(.0:.0001:1.0488);
h1=P0*(x+P1);h2=(x+P2);h3=(x+P3);h4=(x+P4);

hh1=h1.*h2;

hh1=hh1.*h3;

hh1=hh1.*h4;

%Simple additional tap coefficients
h1=-4*(x-1-2/N(-2)-2/\(-4));h2=(x-0);h3=(x-2/\(-4)); hd=(x-2/\(-3)-2/\(-6));
hh2=h1.*h2;

hh2=hh2.*h3;

hh2=hh2.*h4;

figure(7);

subplot(211)

plot(x,20*log10(abs(hh1)),'- -',x,20*log10(abs(hh2)));axis([xs1 xp2 -
100 10]);grid

title('Response for P(x): solid and dashed line for quantized and
unquantized P(x)s");

xlabel('x"); ylabel('Amplitude in dB')

%Passband details

subplot(212);plot(x,hh1,'- -',x,hh2),grid;axis([xp1 xp2 .99 1.01));
title('Passband details');

xlabel('x"); ylabel('Amplitude’)

%0Overall responses
h1=P0*(H+P1);h2=(H+P2);h3=(H+P3);h4=(H+P4);

hh1=h1.*h2;

hh1=hh1.*h3;

hh1=hh1.*h4;

%Simple additional tap coefficients
h1=-4*(H-1-2(-2)-2/\(-4));h2=(H-0);h3=(H-2/(-4)); h4=(H-2/(-3)-2/\(-
6));

hh2=h1.*h2;

hh2=hh2.*h3;

hh2=hh2.*h4;

figure(8)

subplot(211)



plot(z/pi,20*log10(abs(hh1)),- -',z/pi,20*log10(abs(hh2)));axis([0 1. -
100 10]);

axis([0 1 -90 10]);grid

title(‘Overall filter: solid and dashed lines for quantized and
unquantized P(x)s');

xlabel('Angular frequency omega/pi'); ylabel('Amplitude in dB’)
%Passband details

subplot(212);plot(z/pi,hh1,'- -',z/pi,hh2),grid;axis([.0, .05 .99 1.01]);
title('Passband details');

xlabel('Angular frequency/pi'); ylabel('Amplitude')
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Solution to Problem 1

Problem I can be solved by finding 2, and €, for
G(Q) of the given even-order 2N in such a way
that it meets
1-9, < G) <1446, for 0<Q <Q,
-0, < G(N) < 6§ for Q, < Q< 7.
and the subfilter criteria become as mild as pos-
sible so that they can be met by the minimum

even order 2M.
For any G({2), the corresponding polynomial P(z)

is obtained using the substitution

cos) = [z — f[]/a,

where
a=1, =0
for Case A and
2 3 (cos s — 1)
o = =
2 + cos 2, — cos {2’ 2 + cos 2, — cos
(4)

for Case B.
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e In Case A, the resulting passband and stopband

region of P(x) are [z,1,1] and [—1, x|, where
Tso = cosf);, @y = cos(l,.

e In Case B, the corresponding regions are [1 —

gp, 14 /5\p] and [——3\8,3\3], where

5 _ 1 — cos {2, ~ 1 + cos (),
P 24cosQ, —cosQ 7 24 cosQ, —cosQ,’

e The figure in the following transparency exempli-

fies these relations.

e Note that P(z) for Case B can be obtained
from the Case A polynomial by replacing = by
|z — a]/B, where a and 3 are given by Eq. (A).
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Relations of the Case A and Case B polyno-
mials P(z) to the best extraripple solution for
the given values of 0, and é,. N =38, ¢, = 0.009,
6, = 0.0009.

Q
L L L T
Q=cos~ [ (x—B)/u]
_________________ ] QS - - - =
'
1
|
|
|
|
T Qp f[==-tmmmmmmm ,
. | |
= i |
< | |
z : :
~ I I I A I 0 ! i
1.01 0.99 0 -40 -80 Xs1 Xs2 Xp1 Xp2 X
IGQ)I in dB
| ILIN. AMP.
: 1.01
Qp=0.3517n, Q,=0.7177m ! m
0 . 0.99
S l i
Case A: - 0 ! ; ]
X,;=0.4493, x,,=1.000 — 20| ! ' ~
p1=Y. » Xp2=1- ’>? - ! | -
Xg1=—1.00, xg=-0.6318 <& ™0 | .
0L .60 [ ! l —
Case B: 80 I ! h
|
Xp1»Xp2=1%0.1787 -100 : ]
XSI,X32=iO.1195 120 W L1} ! 7]
Xs1 Xs2 Xp1 Xp2 X
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How to find the best solution fast?

e It has turned out that the mildest subfilter cri-
teria are typically obtained at those values of (2,
and €, for which G(2) has an extraripple solution
(one extrema more than required by the charac-
terization theorem) for the specified values of 4,
and J; (see the lecture notes on Digital Filtering

I1, especially the handbook chapter).

e The best extraripple solution is the one for which

(2, and 7 — ), are the most equal.

e As an example, the figure in the previous trans-
parency gives the best extraripple solution for
N = 8, 4, = 0.009, and ¢, = 0.00009 along with
the corresponding polynomials P(x) in Cases A

and B.
e Note that the allowable passband and stopband

variations for the subfilter are in both cases huge

compared to those of the overall design.
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The solutions of transparency 36 are used later as
a starting point for synthesising multiplier-free fil-

ters for 0, = 0.01 and d, = 0.0001.

The desired extraripple solutions can be found di-
rectly using the algorithm of Hofstetter, Oppen-
heim, and Siegel.

This algorithm can also be implemented by slightly
modifying the Mclellan-Parks-Rabiner algorithm.

Later on, we shall introduce a Matlab-file, called
extralin.m, which automatically performs all the

work for us.
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The best extraripple solution for N = 8, ¢, =
0.009, and 45 = 0.00009

In the following, there are three sets of 8 trans-

parencies for different extraripple solutions.

These solutions are characterized by the fact that
they oscillate in both the passband and stopband
just between the given limits (1 £+ 6, in the pass-

band and =+6, in the stopband).

For these filters, the passband edge 2, (the stop-
band edge (5) is determined as the (first) last
frequency point where the value 1 — §, (d,) is

achieved.

When these edge points are included in the num-
ber of extremal points, these designs have one
more extremal points than required by the char-

acterization theorem of the best solution.

When counting the number of passband ripples
for the extraripple filters, the cutoff point €2, is

not included.

For each selection of the number of ripples in the
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passband, there is a unique solution. The number

of passband ripples can be selected between unity

and N for a filter of order 2NV.

e The first, second, and third sets in the following
are for the cases with three, four, and five pass-

band ripples.

e Lor these cases, (), = 0.23547 and 2, = 0.6103;
(2, = 0.3571m and €, = 0.71777; and (), = 0.4646
and 2, = 0.81677.

e Hence, for the case with four passband ripples, €2,

and ™ — {25 are the most equal.
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Impulse response
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Case A: Passband details
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Zero plot for the extraripple filter
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Impulse response for the extraripple filter
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Case B: Passband details
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Zero plot for the extraripple filter
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Matlab-file extralin.m

Given 9, and 0,, this routine automatically finds

out the best extraripple solution.

It gives for Cases A and B P(z) in the form
Ny
CH (b1 [2]2 + b [ L)+ by 0] ] [ [ex[ 1)+ ex[O]],
k=1

where the bk,[ ]’s and c¢g[1]’s are equal to unity.
It gives also xs1, Ts2, Zp1, and xpo.

The desired P(zx) is formed according to the dis-
cussion of pages 17-21 by using the values of «

and [ given on page 34.
The above data is saved for further use in file lin-

fir.

There is also a file, called subfir.m, which reads
linfir as well as the impulse response coefficients

of the subfilter (hsub) and plots variuos responses.

On page 56 there is an example on how to use
subfir.m.
You can find subfirm and extralin.m in the fol-

lowing transparencies.



%
%
%
%
%
%
%
%
%
Y%
%
%
%
%
%
%
%
%
Y%
%
%
%
%
%
%
%
%
Y%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

Matlab m-file (extralin.m) for determining the best
extraripple solution for minimizing the even sub-
filter order for the given number of subfilters in
the case where identical FIR subfilters are used
for building the overall filter.

See T. Saram"aki "Finite impulse response filter
design" in Handbook for Digital Signal Processing,
edited by S. K. Mitra and J. F. Kaiser, John Wiley
& Sons, 1993, pages 256 - 271.

This program determines the unquantized additional
tap coefficients in Figure 4-58(b).

The input data for this program are the passband
and stopband ripples of the overall filter as well
as the number of subfilters.

This program finds first the best extraripple
solution for these criteria. See the above-
metioned article. Some additional information is
included in the program

Tapio Saram"aki 5.3.1997, e-mail: ts @ cs.tut.fi

This program uses a modified Remez-routine, called
extrar.m, for determing the extraripple solutions.
This program has been modified by Tapio Saram"aki.

The routines be found in Sun's: ~ts/matlab/sldsp

Quntization of the additional tap coefficients to
two or three powers-of-two is not yet included in
this routine.

This routine explains how to get P(x) in the form
of equation (4.205) in a simple manner than in the
above-mentioned article.

Initial values for the case considered in the
above-mentioned article can be found by using
dp=0.009,ds=0.00009,nsub=8. Please try!



%
% can be found in SUN's: ~ts/matlab/sldsp
%
disp('Hi there')
disp('l am an program for designing extraripple')
disp('lowpass FIR filters')
dp=input('Passband ripple=');
ds=input('Stopband ripple=");
disp('1 for fixing the nuber of passband ripples’)
itype=input('0 for automatic optimization: ')
if itype==
ipass=input('Number of passband ripples=");
end
nsub=input('Number of subfilters =");
nfilt=2*nsub;
ipas=0;
if itype==1 ipas=ipass-1;end
diffe=1000;
11=0;
while Il < 1
ipas=ipas+1
[hhh,cut]=...
extrar(nfilt,[dp ds],ipas,[0 1],[1 1],1);
cut=2*cut;
%
% Find the passband edge, that is, the frequency point
% where the value 1-dp is achieved
%
xc=(cut(2)+cut(1))/2;
xd=cut(2)-xc;
amdes=1-dp;
%
% the edge is dsired to be determined with accuracy
% less than or equal to 10/\(-12)*pi
%
kk=ceil(log10((10712/(cut(2)-cut(1))/1000))/2);
for k=1:kk
[AA,ww]=zeroam(hhh,xc-xd,xc+xd,1000);
[Y,l]=sort(abs(AA-amdes));
ww=ww(l);xc=ww(1)/pi;xd=xd/1000;
end
ccl=xc;



%
% Find the passband edge, that is, the frequency point
% where the value 1-dp is achieved
Y%
xc=(cut(2)+cut(1))/2;
xd=cut(2)-xc;
amdes=ds;
for k=1:kk
[AA,ww]=zeroam(hhh,xc-xd,xc+xd,1000);
[Y,l]=sort(abs(AA-amdes));
ww=ww(l);xc=ww(1)/pi;xd=xd/1000;
end
CC2=XC;
difc=1-cc2;diffe 1=abs(difc-cc1);
=1
if diffe1 < diffe
h=hhh;diffe=diffe1;ipass=ipas;ll=0;c1=cc1;

c2=cc2;
end
if itype==1 lI=1; end
end
[H,fl=zeroam(h,.0,1.,4000);
figure(1)

plot(f/pi,20*log10(abs(H)));grid;

title(['Extraripple filter: order=',...

numz2str(nfilt),' number of passband ripples=/,...
numz2str(ipass)]);

xlabel(‘Frequency as a fraction of pi');
ylabel('Amplitude in dB')

figure(2)

subplot(211)

plot(f/pi,H);grid;axis([0 c1 1-1.2*dp 1+1.2*dp]);
title(['Passband details, Omega_p=', num2str(c1),'pi']);
xlabel('Frequency as a fraction of pi');
ylabel('Amplitude ');

subplot(212)

plot(f/pi,H);grid;axis([c2 1 -1.2*ds 1.2*ds]);
title(['Stopband details, Omega_s=', num2str(c2),'pi']);
xlabel('Frequency as a fraction of pi');
ylabel('Amplitude *);

figure(3)

zplane(h);title('Zero plot for the extraripple filter')



figure(4)
impz(h)
title('Impulse response for the extraripple filter');
xlabel('n in samples');ylabel('Impulse response’)
g=h;
%
% Form
G(Omega)=gconst*G_1(Omega)*G_2(Omega)*G_3(Omega),
% Here, gconst=2~(nsub)*h(1). G_1(Omega)=cos(Omega)+gnr(1)
% with gnr(1)=(-r-1/r)/2 if g contains a reciprocal zero
% pair at z=r,1/r.
% G_2(Omega)=[cos”"2(Omega)+gnq1(1)*cos(Omega)+gng2(1)]...
% [cos™2(Omega)+gnqg1(nqg)*cos(Omega)+qng2(nq)] if g contains
% nq zero quadruplets at z=r(k)*exp(+-jphi(k),
% (1/r(k))*exp(+-jphi(k) for k=1,2,...,nq.
% Knowing the zero quadruplet z1,z2,23,z4 for the kth term,
% we first form gk(z)=poly(z1,z2,23,z4)=
% [1+z7\(-4)]+a[z/\(-1)+2/\(-3)]+bz/\(-3).
% Then, the corresponding term in G_2(Omega) is
% [cos”2(Omega)+(a/2)*cos(Omega)+(b-2)/4].
% G_3(Omega)=[cos(Omega)+gnc(1)]...[cos(Omega)+gnc(nc)]
% if g contains nc zero pairs on the unit circle at the
% angular frequencies Omega=0Omega_k for k=1,2,...,nc.
% Here, gnc(k)=-cos(Omega_k)
%
g=roots(h);q=sort(q);
gconst=g(1)*2/(nsub);
ng=floor((ipass-1)/2); %enumber of zero quadruplets
nr=ipass-1-2*nq; %number of reciprocal zero pairs (1 or 0)
nc=nsub-ipass+1; Y%enumber of unit-circle zero pairs
%
% For possible reciprocal zero pair on the real axis
%
if nr==1 gnr(1)=(-q(1)-1/q(1))/2; end
%
% For zero quadruplets
%
ifng>0
fork=1:nq
clear d;
d(1)=q(nr+2*k-1);d(2)=q(nr+2*k);d(3)=1/d(1);
d(4)=1/d(2);



f=poly(d);
gnql(k)=real(f(2)/2);gng2(k)=real((f(3)-2)/4);
end
end
%
% For zero pairs on the unit circle
%
mm=nr+2*nq
fork=1:nc
clear d;
d(1)=q(mm+2*k-1);d(2)=q(mm+2*k);
f=poly(d);
gnc(k)=f(2)/2;
end
Yo% %0 %o %o %o Yo %o Yo %o Yo %o Yo Yo Yo Yo %o Yo %o Yo Yo Yo Yo Yo Yo Yo Yo Yo Vo Yo Yo Yo Yo
%% %0 %o %o %o %o %0 Yo %o Yo Yo %o %o Yo Yo Yo Yo Yo Yo Yo %o Yo Yo
% Case A: x=cos(Omega), P(x) is formed like in equation
% (4.205); D=gconst, N_2=nr+nc, gamma_k's are gnr(1)
% (nr=1) and gnc(k) for k=1,2,...,nc. alpha(k)=gng1(k)
% and beta(k)= gnq2(k) for k=1,2,.., nq; N1=nq
Y% %o %o %o Yo %o Yo Yo %o Yo %o Yo Yo %o Yo Vo Yo Yo Yo Yo Yo Yo Yo Yo Yo Vo Yo Yo Yo Yo Yo %o Yo
Y% %o %0 %o Yo %o %o Yo Yo Yo Yo Yo %o o Yo %o Yo Yo Yo Yo Vo o Yo Yo

%

% Edges for P(x)

Y%
xp2=1;xp1=cos(pi*c1);xs2=cos(pi*c2);xs1=-1;

%

% Evaluate P(x) in the range [-1, 1)
x=(-1:.0001:1);

PA=gconst*ones(size(x));
if nr==1 p=x+gnr(1); PA=p.*PA;end
if ng>0
fork=1:nq
p=X.*"x+gnqg1(k)*x+gnq2(k);
PA=p.*PA;
end
end
fork=1:nc
p=x+gnc(k);
PA=p.*PA;
end
figure(5)



plot(x,20*log10(abs(PA)));grid;
title(['Case A: xs1=',num2str(xs1),’, xs2="...
,num2str(xs2),', xp1=",num2str(xp1),’, xp2="...
,num2str(xp2)])
ylabel(‘abs(P(x)) in dB"); xlabel('x’);
figure(6)
subplot(211)
plot(x,PA);axis([xp1 xp2 1-1.2*dp 1+1.2*dp]);grid;
title(['Case A: Passband details'))
ylabel('P(x)"); xlabel('x);
subplot(212)
plot(x,PA);axis([xs1 xs2 -1.2*ds 1.2*ds]);grid;
title(['Case A: Stopband details'])
ylabel('P(x)"); xlabel('x);
%% %0 Yo %o Yo Vo Yo Yo Vo Yo Vo Yo Vo Yo Yo Yo Yo Vo Yo Vo Yo Yo Yo Yo Yo Yo Yo Yo Yo Vo Yo Yo
%% %0 %o %o %o %o %o %o %o Yo %o Yo %o Yo %o %o Yo Yo Yo Vo Yo Yo Yo
% Case B: P(x)=P'((x-beta)/alpha)), where P'(x) is the
% polynomial in Case A. P(x) is generated in the form of
% equation (4.205) by applying the transformation to the
% first-order and second-order sections of P'(x)
% separately.
% [x+d] is mapped to (1/alpha)[x+(alpha*d-beta)].
% [x"2+d1*x+d2] is mapped to (1/alpha’2)[x"2+dd1*x+dd2],
% where dd1=-2*beta+alpha*d1 and dd2=beta”2-
% beta*alpha*d1+alpha”2*d2. The terms before the
% parenthesis are included in D.
% D=gconstb, N_2=nr+nc, gamma_k's are gnrb(1) (nr=1) and
% gncb(k) for k=1,2,...,nc. alpha(k)=gnq1b(k) and beta(k)=
% gng2b(k) for k=1,2,.., nq; N1=nq
Yo %0 %o %0 %o %o %o Yo %o %o Yo Yo Vo Yo Yo Yo Yo Yo Yo Vo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo
%6 %6 %0 %0 %0 %o Yo %o Yo Yo %o Yo %o Yo %o Yo Yo Yo Yo %o Yo Yo Yo Yo Vo
%
% Determine alpha, beta, bardp, and bards according to
% equations (4.202) and (4.204)
%
aa=2+cos(c1*pi)-cos(pi*c2);
alpha=2/aa;beta=(1-cos(pi*c2))/aa;
bardp=(1-cos(pi*c1))/aa;
bards=(1+cos(pi*c2))/aa;
Y%
% Determine D
%



gconstb=gconst/(alpha’(nsub));
%
% First-order section corresponding to a possible reciprocal
% zero pair on the real axis
%
if nr==1 gnrb(1)=alpha*gnr(1)-beta; end
%
% Second-order sections corresponding to the zero
% quadruplets
%
ifng>0
fork=1:nq
gnq1b(k)=-2*beta+alpha*gnqi(k);
gng2b(k)=beta*beta-beta*alpha*gnq1(k)...
+alpha*alpha*gng2(k);
end
end
%
% First-order sections corresponding to the zero pairs on
% the unit circle
%
for k=1:nc
gncb(k)=alpha*gnc(k)-beta;
end
%
% Edges for P(x)
%
xp2b=1+bardp;xp1b=1-bardp;xs2b=bards;xs1b=-bards;
%
% Evaluate P(x) in the interval [xs1b, xp2b]
%
x=(xs1b:.0001:xp2b);
PA=gconstb*ones(size(x));
if nr==1 p=x+gnrb(1); PA=p.*PA;end
if ng>0
for k=1:nq
p=X.*x+gnq1b(k)*x+gng2b(k);
PA=p.*PA;
end
end
for k=1:nc
p=x+gncb(k);



PA=p.*PA;
end
figure(7)
plot(x,20*log10(abs(PA)));grid;
title(['Case B: xs1=',num2str(xs1b),...
', xs2=",num2str(xs2b),', xp1=",num2str(xp1b),...
', xp2=",num2str(xp2b)])
ylabel(‘abs(P(x)) in dB'); xlabel('x’);
figure(8)
subplot(211)
plot(x,PA);axis([xp1b xp2b 1-1.2*dp 1+1.2*dp]);grid;
title(['Case B: Passband details'])
ylabel('P(x)"); xlabel('x');
subplot(212)
plot(x,PA);axis([xs1b xs2b -1.2*ds 1.2*ds]);grid;
title(['Case B: Stopband details'])
ylabel('P(x)"); xlabel('x");
disp(‘Form P(x)")
disp('unscaled tap coefficients')
itype=input('1 for Case A and 2 for Case B')
if itype==1
xxS1=xs1;xx82=xs2;xXp1=xp1;Xxp2=Xxp2;
D=gconst;
N2=nc;
if nr==1 N2=1+nc; gamma(1)=gnr(1);end
ifnc>0
for k=1:nc
gamma(nr+k)=gnc(k);
end
end
ifng>0
N1=nq;
for k=1:nq
alph(k)=gnq1(k);
bet(k)=gnqg2(k);
end
end
end
if itype==2
xxs1=xs1b;xxs2=xs2b;xxp 1=xp1b;xxp2=xp2Db;
D=gconstb;
N2=nc;



if nr==1 N2=1+nc; gamma(1)=gnrb(1);end
ifnc>0
for k=1:nc
gamma(nr+k)=gncb(k);
end
end
ifng>0
N1=nq
for k=1:nq
alph(k)=gnq1b(k);
bet(k)=gng2b(k);
end
end
end
N2=nr+nc;
disp('Print P(x)=D(x*2+alph(1)x"2+bet(1))*...")
disp("™(x"2+alph(N_1)x"2+bet(N_1))*(x+gamma(1))*...")
disp("™(x+gamma(N2)")
N1
N2
D
alph
bet
gamma
figure(9)
bb(1)=xxs1;bb(2)=xxs2;bb(3)=xxp1;bb(4)=xxp2;
bb(5)=D;bb(6)=N1;bb(7)=N2;
z1(1)=0;z2(1)=0;
plot(z1,z2);axis([-100 0 -100 Q]);
step=-100*2/(2*(N1+N2+3)+1);
if itype==
title('Unscaled Additional Tap Coefficients in Case A')
end
if itype==2
title('Unscaled Additional Tap Coefficients in Case B')
end
text(-90, step, [num2str(N1), ' second-order sections'));
text(-90, 2*step, [num2str(N2), ' first-order sections'));
text(-90, 3*step, ['C =, num2str(D,7)]);
if N1>0
for k=1:N1
b1=1;



b2=alph(k);
b3=bet(k);
bb(length(bb)+1)=b1;
bb(length(bb)+1)=b2;
bb(length(bb)+1)=b3;
I=3+k
text(-90,I*step,...
['b',num2str(k),'(',num2str(2),") = ',num2str(b1,7),...
', b',num2str(k),'(',num2str(1),") = ',num2str(b2,7),...
', b',num2str(k),'(',num2str(0),") = ',num2str(b3,7),...
D;
end
end
ifN2>0
for k=1:N2
b1=1;
b2=gamma(k);
bb(length(bb)+1)=b1;
bb(length(bb)+1)=b2;
I=3+N1+k
text(-90,*step,...
['c',num2str(k),'(',num2str(1),") = ",num2str(b1,7),...
', ¢',num2str(k),'(',num2str(0),") = ",num2str(b2,7),...
D);
end
end
hui=rot90(rot90(rot90(bb)));
save linfir hui -ascii -double



% Matlab-file subfir.m for analysing filters
% constructed using identical FIR subfilters
% as building blocks. The file extralin.m generates
% linfir containg the coefficients of P(x) as well
% as its edges
% can be found in SUN's: ~ts/matlab/sldsp
clear all
close all
load linfir;
bb=linfir;
xs1=bb(1);xs2=bb(2);xp1=bb(3);xp2=bb(4);N1=bb(6);
N2=bb(7);C=bb(5);le=7;
if N1>0;
for k=1:N1
le=le+1;b(k,3)=bb(le);
le=le+1;b(k,2)=bb(le);
le=le+1;b(k,1)=bb(le);
end
end
if N2>0
for k=1:N2
le=le+1;c(k,2)=bb(le);
le=le+1;c(k,1)=bb(le);
end
end
%
% load the subfilter
%
load hsub
hsub=rot90(hsub);
%
% Subfilter response
%
[H,z]=zeroam(hsub,.0,1.,10000);
figure(1)
plot(z/pi,H);grid;title('Subfilter');
ylabel('Zero-phase frequency response’);
xlabel('Angular frequency as a fraction of pi');
%

%Passband and stopband minimum and maximum as well as

%the overall response for P(x) and for the composite
Y%filter



%
xp=(xp1:.0001:xp2);
xs=(xs1:.0001:xs2);
xx=(xs1:.0001:xp2);
Pp=C*ones(size(xp));
Ps=C*ones(size(xs));
P=C*ones(size(xx));
Pove=C*ones(size(H));
if N1>0
for k=1:N1
cc3=b(k,3);
cc2=b(k,2);
ccl=b(k,1);
pp=cc3*xp.*xp+cc2*xp+cci;
ps=cc3*xs.*xs+cc2*xs+cci;
P=CC3*XX.*XX+CC2*Xx+cc1;
pove=cc3*H.*H+cc2*H+cc1;
Pp=Pp."pp;
Ps=Ps.*ps;
P=P.*p;
Pove=Pove.*pove;
end
end
ifN2>0
for k=1:N2
cc2=c(k,2);
ccl=c(k,1);
pp=cc2*xp+cci;
ps=cc2*xs+cc;
p=cc2*xx+cci;
pove=cc2*H+cc1;
Pp=Pp.*pp;
Ps=Ps.*ps;
P=P."p;
Pove=Pove."pove;
end
end
apmin=min(Pp);
apmax=max(Pp);
asmax=max(Ps);
asmin=min(Ps);
ass=max(abs(Ps));



figure(2)

AP=1.5"20*log10(abs(apmax));
AS=1.5*20*log10(ass);
ave=(apmax+apmin)/2;dp=apmax-ave;
APA=ave+1.2*dp;APl=ave-1.2*dp;
plot(xx,20*log10(abs(P)));axis([xs1 xp2 AS AP]);
grid;

tittle(['P(x): xs1=",num2str(xs1),', xs2="..
,num2str(xs2),’, xp1=',num2str(xp1),’, xp2="...
,num2str(xp2)])

ylabel(‘abs(P(x)) in dB'); xlabel('x");

figure(3)

subplot(211)

plot(xp,Pp);axis([xp1 xp2 API APA]);

grid;

title(['Passband details'])

ylabel('P(x)"); xlabel('x');

subplot(212)

plot(xs,Ps);axis([xs1 xs2 1.2*asmin 1.2*asmax]);grid;
title(['Stopband details'])

ylabel('P(x)"); xlabel('x’);

figure(4)

plot(z/pi,20*log10(abs(Pove)));axis([0 1 AS AP));
;grid;

title(['Overall filter');

ylabel('Amplitude in dB');

xlabel('Angular frequency as a fraction of pi');
figure(5)

subplot(211)

plot(z/pi,Pove);axis([0 1 APl APA));

grid;

title(['Passband details'])

ylabel('Zero-phase response');

xlabel('Angular frequency as a fraction of pi');
subplot(212)

plot(z/pi,Pove);axis([0 1 1.2*asmin 1.2*asmax]);grid;
title(['Stopband details'))

ylabel("Zero-phase response');

xlabel('Angular frequency as a fraction of pi');



Example: w, = 0.47, w, = 0.4027, ¢, = 0.01, and

0s = 0.0001.
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e The following table gives the minimum subfilter
orders 2M for various values of N, the number of
subfilters, along with the subfilter specifications in
Cases A and B as well as the number of distinct

coefficients NV + M + 2, and the overall filter order,

2MN.

e N =1 corresponds to the direct-form design.

TABLE 4-12 Data for Filters Synthesized Using Identical Subfilters

B Number of Overall
Number of Subfilter cos , é,, Distinct Filter
Subfilters Order cos €2, o, Coefhcients Order
N=1 3138 1570 3138
N=2 2056 0.98038 0.005000 1032 4112
—0.94450 0.014142
N=4 1046 0.79100 0.057687 529 4184
—0.83208 0.046348
N=6 692 0.58445 0.125781 354 4152
—~0.71930 0.084963
N=38 514 0.43774 0.183502 267 4112
—0.62629 0.121968
N =10 408 0.33818 0.228955 216 4080
—0.55241 0.154843
N=15 268 0.29826 0.266590 151 4020
—0.33403 0.252999
N =20 200 0.28324 0.288587 122 4000
—0.20044 0.321925
N =30 132 0.17262 0.355611 98 3960
—0.15404 0.363594
N =40 98 0.11975 0.391903 91 3920
—0.12635 0.388965
N =50 78 0.08953 0.414360 91 3900
—0.10775 0.406070
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It is interesting to observe that the overall filter
order for all the cases is approximately 1.3 times

(within 1.24-1.33) that of the direct-form design.

If all the identical subfilters are implemented sep-
arately, then the overall multiplication rate per
sample, N(M + 1) + N + 1, is higher than that of

the direct-form equivalent.

However, the structures of transparency 2 become
advantageous if all the subfilters are implemented
using a single subfilter by applying multiplexing.

Since the subfilter order can be reduced to any
value by increasing the number of subfilters, it
has the potential of being realized by a fast short
convolution algorithm or implemented using an in-

tegrated FIR filter chip.
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Design of FIR Filters Without General Mul-

tipliers

Using the second overall structure of transarency
2, it is relatively easy to design high-order filters

without general multipliers.

Filters of this kind are very attractive in VLSI
implementation where a general multiplier is very

costly.
These filters can be designed in two steps.

In the first step, the additional tap coeflicients of
the second structure are quantized to values which

are simple combinations of powers-of-two.

The second step then involves designing the sub-
filter in such a way that there are no general mul-

tipliers.
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It is relatively easy to get such a subfilter with-
out time-consuming optimization since the ripple
values of the subfilter are very large and, conse-
quently, large coefficient quantization errors are al-

lowed.

The rule of thumb for direct rounding of FIR fil-
ter coefficients is that if the allowed quantization

error is made double, one bit is saved.

Also the order of the subfilter is significantly re-

duced compared to the order of the overall filter.

Another rule of thumb for direct rounding is that
if there are two filters with the same allowable
quantization error and the order of the first filter
is one fourth that of the second filter, then the

first filter requires one bit less.
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Performing the First Step

e To allow some quantization error for the tap co-
efficients, G(2) of the given order 2N is first de-
signed to be the best extraripple solution for the
passband and stopband ripples of 0.8d,---0.99,
and 0.89; - --0.99;.

e This G(f2) is then converted to P(z) according
to the previous discussion and the passband and
stopband regions of P(x), [z,1,%e] and [z, z.s],

are located.

e In both Case A and Case B, the resulting P(x)

can be factored in the form
Ny Ny

P(x)=D :l_[(x2 + arz + Gr) H(az + k).

k=1 k=1
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e A very straightforward technique to arrive at sim-
ple tap coefficients is based on expressing the co-

efficients of the second- and first-order terms as
ay = bp[1]/bx[2], Br = bk[0]/bk[2] (A)
= ¢x[0]/cx[1].

e The resulting P(x) can be written in the follow-

ing form corresponding to the second structure:

P(z) = Cﬁ(bk[Z]x2+bk[1]x+bk[O]) ﬁ(ck[l]az—l—ck[()]).
k=1 k=1

o If the coefficients of a second-order term are de-
sired to be quantized to two powers-of-two values,
i.e. yalues of the form 271 4+ 272 then a simple
technique is to first set bg[2] to take all possible

two powers-of-two values within 1/2 and 1.

e Then, for each value of b[2], the remaining coef-
ficient values bg[l] and b;[0] are determined from
Eq. (A) and quantized to the closest two powers-
of-two values. Finally, those values which provide
the closest approximations to «a; and (3, are se-

lected.
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e Quantized values for the ci[1]’s and ¢;[0]’s can be

found in the same manner.

e Then, C is selected such that the average of P(x)
in the passband region [z,1,Z,2] is unity and it is
checked whether P(x) is within the limits 144, in
the passband region [z,,%,2] and within the lim-

its =05 in the stopband region [z, zs].

e If not, some of the coefficients require three

powers-of-two representations.

e What remains is to design a multiplier-free sub-
filter such that its zero-phase frequency response
Fy(w) stays within z,; and =z, in the passband
region and within z,; and x4 in the stopband re-

gion.
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Example: 4, = 0.01 and 4, = 0.0001 and N = 8
subfilters are used.

The figure of transparency 36 gives the best ex-
traripple solution of G(f2) for the ripple values
0.9, and 0.90; as well as the corresponding poly-
nomial P(z) in both Case A and Case B together

with its passband and stopband regions.

The following two transparencies give the unquan-

tized coefficient values of polynomials P(x) for
both Cases A and B.

In both cases, P(z) still meets the given criteria
when the additional tap coefficents are quantized,
using the above procedure, to the values shown in

the table of transparency 52.

In Case A, it is required that Fj;(w) stays within
the limits 0.4493 and 1 in the passband(s) and
within the limits —1 and —0.6318 in the stop-
band(s).

In Case B, the required passband and stopband
ripples are 5p 0.1787 and 5 = 0.1195, respec-
tively.
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Unquantized Tap Coefficients of P(x) in Case
A: oy = bi(1), Br = bk(0), v = cx(0)

e The corresponding P(z) can be found after page
39 in the case of the extraripple solution with four

passband extrema.

Unscaled Additional Tap Coefficients in Case A

O I | 1 i | T 1 I I
-10F 1 second-order sections .
20+ 6 first-order sections 4
30+ C =-1.747409 |
-0l b1(2) = 1, b1(1) =-1.727774, b1(0) = 0.9163419 |
501 c1(1) =1, ¢c1(0) =-1.19679 i
c2(1) =1, c2(0) = 0.7490325
-80F .
c3(1) =1, ¢3(0) = 0.9885211
-70F N
c4(1) =1, ¢4(0) = 0.4630901
_80 - .
c5(1) =1, ¢5(0) = 0.5799069
_90 — _
c6(1) =1, c6(0) = 0.9009847
_1 OO | | | | | 1 | | |

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10 0



Unquantized Tap Coefficients of P(x) in Case
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B: A = bk(l>, ﬂk = bk(O), ’yk:E Ck(())

e The corresponding P(x) can be found after page

39 in the case of the extraripple solution with four

passband extrema.

Unscaled Additional Tap Coefficients in Case B

N
o
T

A
o
T

o
o
T

o)
O
T

®
o
T

T ! | T I | 1 I T

1 second-order sections

6 first-order sections

C =-36.83553

b1(2) =1, b1(1) =-2.16844, b1(0) = 1.25489
c1(1) =1, ¢1(0) =-1.311643

c2(1) =1, c2(0) = 0.01764555

c3(1) = 1, ¢3(0) = 0.1812521

c4(1) = 1, c4(0) = -0.1776959

c5(1) = 1, ¢5(0) = -0.09789256

c6(1) = 1, c6(0) = 0.1214517
i |

-100
-100

-90 -80 -70 -60 -50 -40 -30 -20 -10
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Quantized Tap Coefficients

Case A
b2} =27 +27¢ b1l = =2°+ 273 - 277 b[0] =2 —27% - 277
all}=27"+277 ofo] = =2°+ 27 +27°
o] =2° c,[0] =20 — 277
o[l =2 -27* ;0] =20 - 27
el =27 +27° 0] =27" +27°
es[1] =20 — 277 es[0] =271 + 277
cll] = 2° — 277 0] =271 +27¢
C=-22-2"'-2""-27
Case B
b2 =2°-2"3+2° b[1] = =2' +27% + 278 b[0] =2° + 273 — 28
alll =27"+27* + 277 0] = —27' =277
o] =27+ 27° 0] =274 —278
ol =2""+27° [0 =270 +27°
c[1] = 2° c[0] =277
ces[1] =2° = 27 cs[0] = =27°
co[1] =2° =27 c6l0] = —273 4 27

C=-2+2"+2-2°




Case A Bandpass Filter with wy;,w,p = 0.57 £
0.27 and Ws1,Ws2 = 0.57m +£0.21m

e In Case A, it is required that Fj/(w) stays within
the limits 0.4493 and 1 in the passbands and
within the limits —1 and —0.6318 in the stop-

bands (see the following transparency).

e The minimum even subfilter order to meet the

criteria 1s 112.

o If the subfilter order is increased to 120, then the
given criteria are still met when direct rounding is
used to quantize the coefficients to the closest two
powers-of-two values in 8-bit representations (see

the following transparency).

e These values are shown in the table of trans-

parency 55.
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Responses for the Case A Bandpass Filter

LIN. AMP.|

~1.01 0.99

0 -40 -80
IP(x)! in dB

IH()! in dB

0.2t 0.4n 0.6 0.8t =mw O

rd
1.01

0.99

1
LIN. AMP.

0.2n 0.4t 0.6 0.8n =m® O



55

Coeflicients for Case A Bandpass Subfilters

TABLE 4-14 Quantized Coefficients’ for a Bandpass Subfilter of Order 120

fI0] = 8 x 278 f[2] =20 x 278 fl4] = —15 x 278 fl6] =6 x 2% fi8] =3 x27°®
f[10] = —4 x 278 fl12] = =2 x 278 fl14] =5 x 278 fl16] = —1 x 278 fl18] = -5 x 2°*#
f[20] =4 x 27°% fl22] = 4 x 278 fl24] = -6 x 27* fI26] = =1 x 27* f281 =7 x 27°®
f[30] = —4 x 278 fI32] = =6 x 278 f[34] = 8 x 278 f[36] =3 x 278 fI38] = —12 x 27®
f[40] = 4 x 278 fl42] = 12 x 278 fl44] = —12 x 27 fla6] = =7 x 278 f148] = 20 x 27¢
fI50] = —4 x 27° f[52] = —28 x 278 f[54] = 28 x 278 fI56] = 34 x 27°® fI58] = —120 x 2%
f[60] = —48 x 278
f [n] is zero for n odd.

TABLE 4-15 Quantized Coefficients” for a Bandpass Subfilter of Order 136

fl0] = =2 x27° fl21 =5 x27° fl4] =0 f16] = fI8] =1 x2°°
fI10] =0 fl12] = =1 x 27° fl141 =0 fl16] = _ x 27° fl18] = —1 x 27°
fl20] = =1 x 27° fl22] =1 x2°° fl24] =0 fl26] = =1 x 27° fl28] =1 x2°°
f[30] =1 x27¢ f[32] = -2 x27° f[34] = 0 fI36] =2 x 27° fI38] = —1 x 27°
f[40] = =2 x 27°¢ fl42]1 =2 x 27° fl44] =1 x 27° fl46] = =3 x 2°7° fl48] =1 x27°
fI50] = 3 x 27°¢ fI52] = =3 x 276 fI54] = =2 x 27° fI56] = 5 x 27° fI58] = —1 x 27°
fl60] = =7 x 27° fl62] =7 x 278 f[64] = 8 x 276 fI66] = —30 x 27 fI68] = —12 x 27°¢

“f{n] is zero for n odd.
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The overall filter order is 960, whereas the min-
imum order of an equivalent conventional direct-

form design is 636.
The price paid for getting a multiplier-free design

is thus a fifty percent increase in the filter order.

If the subfilter order is increased to 136, then
with direct rounding we end up with the very
simple six-bit coefficient values of the table of the

previous transparency.

The following transparencies give a Matlab-file for
designing the above-mentioned bandpass filters as
well as the responses for the quantized and un-

quantized filters.

Please use extralin.m with passband ripple equal
to 0.009, stopband ripple equal to 0.0009, and the
number of subfilters equal to 8. Select the Case
A. Use then firband.m and finally subfir.m. Check

the responses obtained by subfir.m



% Matlab-file firband.m for designing

% quantized bandpass filters

% can be found in SUN's: ~ts/matlab/sldsp

f=[0. .29 .3.7 .71 1.];

m=[-0.8159 -0.8159 0.7247 0.7247 -0.8159 -0.8159];

w=[1.55 1 1.55];

h120=remez(120, f, m, w);

w=[1.7 1 1.7];

h136=remez(136, f, m, w);

hs120=round(h120*2/8)/(2/8)

hs136=round(h136*2/6)/(2/\6)

figure(1)

[H,W]=zeroam(h120,.0,1.,2000);
[H1,W1]=zeroam(hs120,.0,1.,2000);

plot(W/pi,H,"- -, W/pi,H1);axis([0 1 -1 1]);grid;

ylabel('Amplitude in dB'); xlabel('Angular frequency omega/pi');
title('Filter order=120: solid (quantized), dashed (unquantized)’)
figure(2)

[H,W]=zeroam(h136,.0,1.,2000);
[H1,W1]=zeroam(hs136,.0,1.,2000);

plot(W/pi,H,"- -\ W/pi,H1);axis([0 1 -1 1]);grid;

ylabel('Amplitude in dB'); xlabel('Angular frequency omega/pi');
title('Filter order=136: solid (quantized), dashed (unquantized)')
hui=rot90(hs120);

save hsub hui -ascii -double
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Case B Lowpass Filter with w, = 0.47 and w, =
0.4027.

In Case B, the required passband and stopband
ripples are 5 = 0.1787 and 5 = 0.1195, respec-
tively.

Using the frequency-response masking approach,
the given lowpass filter criteria are met by a sub-
filter of the form Fy(2) = F(2Y)Gy(z) + [z~ NPL/2 —
F(2")]Gs(2), where L = 16, the order of F(z) is
40, and the orders of G1(z) and Gs(z) are 22 and
30, respectively.

This filter has been slightly overdesigned such
that direct rounding can be used to quantize the

filter coefficients to the 6-bit values shown in the

table of the following transparency.

Only one coefficient (go[14] = 19 - 27°%) requires a

three powers-of-two representation.
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Coefficient Values for the Case B Lowpass

Frequency-

Designed Using the

Subfilter

TABLE 4-16 Quantized Coefficients for a Subfilter Designed Using the Frequency-Response Masking Approach

g,[15] = 24 x 27°¢

flo] =2 x2°° fll] = —4 x27° fl2l = =3 x27°¢ fI3] = =2 x27° fl4] =1 x27°
fI5]1 =0 fl6] = —1 x 27° fl7l = =2 x27° fI81 =0 fl9] =2 x27¢
fl10] =1 x 27° fll1] = =2 x 27¢ fl12] = =3 x 27°¢ fl131=1x2"° fl14] = 4 x 276
fl15] =1 x N-mo fl16] = =5 x 27° fl17] = =6 x 27°¢ fl18] =5 x 27° fl19]1 = 17 x 278
f[20] = 28 x 2~

g 0] =2x2° gl =3 x27° g2l = —-1x27¢ g3 = -2x27° g4 =-1x27°
gi[5] =3 x27° gi[6] =2 x27° g7 = -4 x27° g[8 = =5 x27° gi[9] =4 x27°
g [10] =20 x 27° g [11] =28 x 276

g[0] = -3 x27° g1l = -1 x27° &Rl =1x27° g8l =2x27° g4 =1 x27°
&[5 = —-1x27° g[6] = =2 x27° g:[711 =20 g[8 =3 x27° 091 =3 x27°
g [10] = —1 x 27° 2111 = =5 x 276 g[12] = =2 x 276 g[13] =7 x27° g [14] = 19 x 27°

Reponse Masking Approach
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Comments

e Note that no optimization has been used in find-
ing these coefficient values. The overall filter order
is 70 percent higher than that of a direct-form
equivalent (5360 compared to 3138).

e The filter responses are given in the following

transparency.

e In the above, direct rounding has been used for

quantizing the subfilter coefficients.

e Another technique, leading to better results, is to
use mixed integer linear programming as proposed

by Lim.
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Responses for the Case B Lowpass Filter
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Responses for the Case B Lowpass Filter
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