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ABSTRACT

This paper emphasizes the usefulness and the
flexibility of optimization for finding optimized digital
signal processing algorithms for various constrained
and unconstrained optimization problems. This is
illustrated by optimizing algorithms in six different
practical applications:

• Optimizing nearly perfect-reconstruction filter banks
subject to the given allowable errors,

• minimizing the phase distortion of recursive filters
subject to the given amplitude criteria,

• optimizing the amplitude response of pipelined
recursive filters,

• optimizing the modified Farrow structure with an
adjustable fractional delay,

• finding the optimum discrete values for coefficient
representations for various classes of lattice wave
digital filters, and

• finding the multiplierless coefficient representations
for the linear-phase finite impulse response filters.
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WHY THERE IS A NEED TO USE

OPTIMIZATION?

Among others, there exist following three reasons:

1) Thanks to dramatic advances in VLSI circuit
technology and signal processors, more complicated
DSP algorithms can be implemented faster and faster.

• In order to generate effective DSP products, old
algorithms have to be reoptimized or new ones
should be generated subject to the implementation
constraints.

2) All the subalgorithms in the overall DSP product
should be of the same quality:

• In the case of lossy coding, nearly perfect-
reconstruction filter banks are more beneficial: lower
overall delay and shorter filters.

3) There are various problems where one response is
desired to optimized subject to the given criteria for
other responses:

• A typical example is to design recursive filters such
that the phase is made as linear as possible subject
to the given amplitude criteria.
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TWO-STEP PROCEDURE

It has turned out that the following procedure is very
efficient:

1) Find in a systematic simple manner a suboptimum
solution.

2) Improve this solution using a general-purpose
nonlinear optimization procedure:

• Dutta-Vidyasagar algorithm

• Sequential quadratic programming

Desired Form: Find the adjustable parameters
included in the vector Φ to minimize

ρ(Φ) = max
1≤i≤I

fi(Φ) (1)

subject to constraints

gl(Φ) ≤ 0 for l = 1, 2, . . . , L (2)

and

hm(Φ) = 0 for m = 1, 2, . . . ,M. (3)

Tampere University of Technology

Signal Processing Laboratory 3



COMMENTS

• The proposed two-step procedure is very efficient
when a good start-up solution being rather close to
the optimum solution can found.

• For each problem under consideration the way of
generating this initial solution is very different.

• A good understanding of the problem at hand is
needed.

• If a good enough start-up solution cannot be found
or there are several local optima, then simulated
annealing or genetic algorithms can be used.
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NEARLY

PERFECT-RECONSTRUCTION

COSINE-MODULATED FILTER BANKS

x(n) MH0(z) M F0(z)

MH1(z) M F1(z)

MHM--1(z) M FM--1(z)

y(n)

Linear-phase prototype filter:

Hp(z) =
N∑

n=0

hp(n)z−n, (4)

Filters in the bank:

hk(n) = 2hp(n) cos

[
(2k + 1)

π

2M

(
n−

N

2

)
+ (−1)kπ

4

]

(5)

fk(n) = 2hp(n) cos

[
(2k + 1)

π

2M

(
n−

N

2

)
− (−1)kπ

4

]
.

(6)
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INPUT-OUTPUT RELATION

Y (z) = T0(z)X(z) +

M−1∑

l=1

Tl(z)X(ze−j2πl/M), (7a)

where

T0(z) =
1

M

M−1∑

k=0

Fk(z)Hk(z) (7b)

and for l = 1, 2, . . . ,M − 1

Tl(z) =
1

M

M−1∑

k=0

Fk(z)Hk(ze
−j2πl/M). (7c)

Here, T0(z) is the reconstruction transfer function and
the remaining ones are aliased transfer functions. It is
desired that T0(z) = z−N and the remaining transfer
functions are zero.
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STATEMENT OF THE PROBLEMS

Problem I: Given ρ, M , and N , find the coefficients
of Hp(z) to minimize

E2 =

∫ π

ωs

|Hp(e
jω)|2dω, (8a)

where

ωs = (1 + ρ)π/(2M) (8b)

subject to

1 − δ1 ≤ |T0(e
jω)| ≤ 1 + δ1 for ω ∈ [0, π] (8c)

and for l = 1, 2, . . . ,M − 1

|Tl(e
jω)| ≤ δ2 for ω ∈ [0, π]. (8d)

Problem II: Given ρ, M , and N , find the coefficients
of Hp(z) to minimize

E∞ = max
ω∈[ωs, π]

|Hp(e
jω)| (9)

subject to the conditions of Eqs.(8c) and (8d).
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COMPARISONS BETWEEN FILTER

BANKS WITH M = 32 and ρ = 1

Boldface numbers indicate that these parameters have
been fixed in the optimization.

Criterion K N δ1 δ2 E∞ E2

Least 8 511 0 0 1.2 · 10−3 7.4 · 10−9

Squared −∞ dB −58 dB

Minimax 8 511 0 0 2.3 · 10−4 7.5 · 10−8

−∞ dB −73 dB

Least 8 511 10
−4 2.3 · 10−6 1.0 · 10−5 5.6 · 10−13

Squared −113 dB −100 dB

Minimax 8 511 10
−4 1.1 · 10−5 5.1 · 10−6 3.8 · 10−11

−99 dB −106 dB

Least 8 511 0 9.1 · 10−5 4.5 · 10−4 5.4 · 10−10

Squared −81 dB −67 dB

Least 8 511 10
−2 5.3 · 10−7 2.4 · 10−6 4.5 · 10−14

Squared −126 dB −112 dB

Least 6 383 10
−3

0.00001 1.7 · 10−4 8.8 · 10−10

Squared −100 dB −75 dB

Least 5 319 10
−2

0.0001 8.4 · 10−4 2.7 · 10−9

Squared −80 dB −62 dB
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PERFECT-RECONSTRUCTION FILTER

BANK with N = 511
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NEARLY PR FILTER BANK with

N = 511 for δ1 = 0.0001
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NEARLY PR FILTER BANK with

N = 511 for δ1 = 0
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NEARLY PR FILTER BANK with

N = 511 for δ1 = 0.01
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NEARLY PR BANK with N = 383 for

δ1 = 0.001 and δ2 = 0.00001
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NEARLY PR BANK with N = 319 for

δ1 = 0.01 and δ2 = 0.0001
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DESIGN OF APPROXIMATELY LINEAR

PHASE RECURSIVE DIGITAL FILTERS

• It is shown how the minimize the maximum deviation
of the passband phase of a recursive digital filter
subject to the given amplitude criteria.

• The filters under consideration are conventional
cascade-form filters and lattice wave digital (LWD)
filters (parallel connections of two all-pass filters).

• There exist very efficient schemes for designing initial
filters in the lowpass case.

• Before stating the problems, we denote the overall
transfer function by H(Φ, z), where Φ is the
adjustable parameter vector.

• The unwrapped phase response of the filter is
denoted by argH(Φ, ejω).
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STATEMENT OF THE PROBLEMS

Approximation Problem I: Given ωp, ωs, δp, and δs,
as well as the filter order N , find Φ and ψ, the slope
of a linear phase response, to minimize

∆ = max
0≤ω≤ωp

| argH(Φ, ejω) − ψω| (10a)

subject to

1 − δp ≤ |H(Φ, ejω)| ≤ 1 for ω ∈ [0, ωp], (10b)

|H(Φ, ejω)| ≤ δs for ω ∈ [ωs, π], (10c)

and

|H(Φ, ejω)| ≤ 1 for ω ∈ (ωp, ωs). (10d)

Approximation Problem II: Given ωp, ωs, δp, and δs,
as well as the filter order N , find Φ and ψ to minimize
∆ as given by Eq. (10a) subject to the conditions of
Eqs. (10b) and (10c) and

d|H(Φ, ejω)|

dω
≤ 0 for ω ∈ (ωp, ωs). (10e)
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EXAMPLE: ωp = 0.05π, ωs = 0.1π,

δp=0.0228 (0.2-dB passband ripple), and

δs = 10−3 (60-dB attenuation)

Elliptic Filter: The minimum order is five.

Cascade-Form Filter for Problem I: For the filter of
order seven the maximum deviation from φave(ω) =
−47.06ω is 0.29 degrees.

Cascade-Form Filter for Problem II: For the filter of
order seven the maximum deviation from φave(ω) =
−47.56ω is 0.50 degrees.

Lattice Wave Digital Filter for Problem I: For
the filter of order nine the maximum deviation from
φave(ω) = −40.38ω is 0.094 degrees.

Lattice Wave Digital Filter for Problem II: For
the filter of order nine the maximum deviation from
φave(ω) = −42.92ω is 0.27 degrees.

Linear-Phase FIR Filter: Minimum order is 107 and
delay is 53.5 samples.
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Cascade-Form Filter for Problem I
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Cascade-Form Filter for Problem II
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Lattice Wave Digital Filter for Problem I
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Lattice Wave Digital Filter for Problem II
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MODIFIED FARROW STRUCTURE

WITH ADJUSTABLE FRACTIONAL

DELAY

y(n)

--2

G0(z)G1(z)GL(z)

x(n)

G2(z)

1

µ

Fixed linear-phase filters for l = 0, 1, . . . , L:

Gl(z) =
N−1∑

n=0

gl(n)z−n (11a)

where N is an even integer and

gl(n) =

{
gl(N − 1 − n) for l even

−gl(N − 1 − n) for l odd.
(11b)

Delay: N/2−1+µ, where the fractional delay 0 ≤ µ <
1 is directly the adjustable parameter of the structure.
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TRANSFER FUNCTION

The overall transfer function is given by

H(Φ, z, µ) =
N−1∑

n=0

h(n,Φ, µ)z−n, (12a)

where

h(n,Φ, µ) =
L∑

l=0

gl(n)(1 − 2µ)l (12b)

and Φ is the adjustable parameter vector

Φ =
[
g0(0), g0(1), . . . , g0(N/2 − 1), g1(0), g1(1), . . . ,

g1(N/2 − 1), . . . , gL(0), gL(1), . . . , gL(N/2 − 1)
]
.

(12c)

Tampere University of Technology

Signal Processing Laboratory 23



AMPLITUDE AND PHASE DELAY

RESPONSES

The frequency, amplitude, and phase delay responses
of the proposed Farrow structure are given by

H(Φ, ejω, µ) =
N−1∑

n=0

h(n,Φ, µ)e−jωn, (13a)

|H(Φ, ejω, µ)| =
∣∣∣
N−1∑

n=0

h(n,Φ, µ)e−jωn
∣∣∣, (13b)

and

τp(Φ, ω, µ) = −arg(H(Φ, ejω, µ))/ω, (13c)

respectively.
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STATEMENT OF THE PROBLEM

Optimization Problem: Given L, N , Ωp, and ǫ, find
the adjustable parameter vector Φ to minimize

δp = max
0≤µ<1

[
max
ω∈Ωp

|τp(Φ, ω, µ) − (N/2 − 1 + µ)|
]

(14a)

subject to

δa = max
0≤µ<1

[
max
ω∈Ωp

||H(Φ, ejω, µ)| − 1|
]
≤ ǫ. (14b)
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EXAMPLES

Example 1: Ωp = [0, 0.75π], ǫ = 0.025, and δp ≤
0.01.

δp = 0.00402 is achieved by N = 8 and L = 3.

Example 2: Ωp = [0, 0.9π], ǫ = 0.01, and δp ≤ 0.001.

The criteria are met by N = 26 and L = 4.
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RESPONSES FOR EXAMPLE 1
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RESPONSES FOR EXAMPLE 2
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DESIGN OF LATTICE WAVE DIGITAL

FILTERS WITH SHORT COEFFICIENT

WORDLENGTH

• It is shown how the coefficients of the various
classes of lattice wave digital (LWD) filters can
be conveniently quantized.

• The filters under consideration are

– the conventional LWD filters,
– cascades of low-order LWD filters providing a very

low sensitivity and roundoff noise, and
– LWD filters with an approximately linear phase in

the passband.

• There exist very efficient schemes for designing initial
filters in the lowpass case.

• Before stating the problems, we denote the overall
transfer function as H(Φ, z), where Φ is the
adjustable parameter vector.
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Overall Transfer Function

The most general form of the transfer function is given
by

H(Φ, z) =

K∏

k=1

Hk(Φ, z), (15a)

where

Hk(Φ, z) = αkAk(z) + βkBk(z). (15b)

Here, Ak(z)’s and Bk(z)’s are stable all-pass filters of
orders Mk and Nk, respectively.

For conventional and approximately linear-phase LWD
filters K = 1.

++ +

A1(z) A2(z) AK(z)

B1(z) B2(z) BK(z)

α1 α2 αK

β1 β2 βK

In Out
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Statement of the Problems

In VLSI applications it is desirable to express the
coefficient values in the form

R∑

r=1

ar2
−Pr, (16)

where each of the ar’s is either 1 or −1 and the Pr’s
are positive integers in the increasing order.

The target is to find all the coefficient values included
in Φ, in such a way that:

1. R, the number of powers of two, is made as small
as possible and

2. PR, the number of fractional bits, is made as small
as possible.
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Problem I: Find K, the number of subfilters, the Mk’s
and Nk’s, as well as the adjustable parameter vector Φ
in such a way that:

1. H(Φ, z) meets the criteria given by

1 − δp ≤ |H(Φ, ejω)| ≤ 1 for ω ∈ [0, ωp] (17a)

|H(Φ, ejω)| ≤ δs for ω ∈ [ωs, π]. (17b)

2. The coefficients included in Φ are quantized
to achieve the above-mentioned target for their
representations.

Problem II: Find Φ as well as τ , the slope of the
linear-phase response, in such a way that:

1. H(Φ, z) meets the criteria given by Eq. (17) and

| arg[H(Φ, ejωi)] − τω| ≤ ∆ for i = 1, 2, . . . , Lp,

where arg[H(Φ, ejω)] denotes the unwrapped phase
response of the filter and ∆ is the maximum
allowable phase error from the linear-phase response.

2. The coefficients are quantized to achieve the above-
mentioned target for their representations.
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Quantization Algorithm

The coefficient optimization is performed in two stages:

1. A nonlinear optimization algorithm is used for
determining a parameter space of the infinite-
precision coefficients including the feasible space
where the filter meets the criteria.

R(max)R(min)

Θ(max)

Θ(min)

1

24

3

R
(min)
0

R
(max)
0

5 6

(a)

(b)

Γ
(min)
2l−1

Γ
(max)
2l−1Γ

(max)
2l

Γ
(min)
2l
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2. The filter parameters in this space are searched
in such a manner that the resulting filter meets
the given criteria with the simplest coefficient
representation forms.

The algorithm guarantees that the optimum finite-
wordlength solution can be found for both the fixed-
point and the multiplierless coefficient representations.
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Numerical Examples

Filter specifications: δp = 0.0559 (0.5-dB passband
variation), δs = 10−5 (100-dB stopband attenuation),
ωp = 0.1π, and ωs = 0.2π.

Ninth-order direct LWD filter is required to meet the
criteria (M1 = 5 and N1 = 4).
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Alternatively, cascade of four 3rd-order LWD filters is
needed to satisfy the amplitude specifications.
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For the cascade of four LWD filters, only 5 fractional
bits are needed for coefficient implementation compared
to 9 bits required by the direct LWD filter.

The number of adders required to implement all the
coefficients are 12 and 6, for the direct and cascade
implementations, respectively.

The price paid for this is a slight increase in the overall
filter order (from nine to twelve).
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Optimized Finite-Precision Adaptor

Coefficient Values for the Cascade of

Four LWD Filters

A(z) B(z)

γ
(1,2)
0 = 2−1 + 2−3

bγ
(1,2)
1 = −1 + 2−2 − 2−5

bγ
(1,2)
2 = 1 − 2−3 + 2−5

γ
(3)
0 = 2−1 + 2−3 + 2−5

bγ
(3)
1 = −1 + 2−2

bγ
(3)
2 = 1 − 2−3 + 2−5

γ
(4)
0 = 1 − 2−2 + 2−5

bγ
(4)
1 = −1 + 2−2 − 2−4

bγ
(4)
2 = 1 − 2−4
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Approximately Linear-Phase LWD Filter

Filter specifications: δp = 0.0228 (0.2-dB passband
variation), δs = 10−3 (60-dB stopband attenuation),
ωp = 0.05π, and ωs = 0.1π.

The minimum order of an elliptic filter to meet the
amplitude specifications in five. An excellent phase
performance is obtained by increasing the filter order
to nine.

For the optimal infinite-precision filter the phase error
is 0.09399 degrees.

To allow some tolerance for the quantization, the
maximum allowable phase error is increased to 0.5
degrees.
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Amplitude and Phase Responses for the

Quantized Filter
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For the optimized filter, only 10 adders with 11
fractional bits are required to implement all the adaptor
coefficients.

The phase error for the optimized filter is 0.458 55
degrees.
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A SYSTEMATIC ALGORITHM FOR

THE DESIGN OF MULTIPLIERLESS

FIR FILTERS

In this application, we show how the coefficients of the
linear-phase FIR filters can be conveniently quantized
using optimization techniques.

The zero-phase frequency response of a linear-phase
N th-order FIR filter can be expressed as

H(ω) =
M∑

n=0

h(n) Trig(ω, n), (18)

where the h(n)’s are the filter coefficients and
Trig(ω, n) is an appropriate trigonometric function
depending on whether N is odd or even and whether
the impulse response is symmetrical or antisymmetrical.
Here, M = N/2 if N is even, and M = (N + 1)/2 if
N is odd.
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Desired Coefficient Representation Form

The general form for expressing the FIR filter coefficient
values as a sums of signed-powers-of-two (SPT) terms
is given by

h(n) =

Wn+1∑

k=1

ak,n2−Pk,n for n = 1, 2, . . . ,M, (19)

where ak,n ∈ {−1, 1} and Pk,n ∈ {1, 2, . . . , L} for
k = 1, 2, . . . ,Wn + 1. In this representation form,
each coefficient h(n) has Wn adders and the maximum
allowable wordlength is L bits.
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Statement of the Problem

When finding the optimized simple discrete-value
representation forms for the coefficients of FIR filters,
it is a common practise to accomplish the optimization
in such a manner that the scaled response meets the
given amplitude criteria.

In this case, the criteria for the filter can be expressed
as

1 − δp ≤ H(ω)/β ≤ 1 + δp for ω ∈ [0, ωp] (20a)

−δs ≤ H(ω)/β ≤ δs for ω ∈ [ωs, π], (20b)

where

β =
1

2

[
maxH(ω) + minH(ω)

]
for ω ∈ [0, ωp]

(20c)

is the average passband gain.

These criteria are preferred to be used when the filter
coefficients are desired to be quantized on a highly
nonuniform discrete grid as in the case of the power-
of-two coefficients.
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Optimization Problem

Given ωp, ωs, δp, and δs, as well as L, the number
of fractional bits, and the maximum allowed number
of SPT terms per coefficient, find the filter coefficients
h(n) for n = 1, 2, . . . ,M as well as β to minimize
implementation cost, in such a manner that:

1. The magnitude criteria, as given by Eq. (20), are
met and

2. the normalized peak ripple (NPR), as given by

δNPR = max{∆p/W, ∆s}, (21)

is minimized.

Here, ∆p and ∆s are the passband and stopband
ripples of the finite-precision filter scaled by 1/β and
W = δp/δs.
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Coefficient Optimization

The coefficient optimization is performed in two stages:

1. For each of the filter coefficient h(n) for n =
0, 1, . . . ,M − 1 the largest and smallest values of
the coefficient are determined in such a manner
that the given amplitude criteria are met subject to
h(M) = 1.

This restriction, simplifying the overall procedure,
can be stated without loss of generality since the
scaling constant β, as defined by Eq. (20), can be
used for achieving the desired passband amplitude
level.

These problems can be solved conveniently by using
linear programming.

2. It has been experimentally observed that the
parameter space defined above forms the feasible
space where the filter specifications are satisfied.
After finding this larger space, all what is needed
is to check whether in this space there exists a
combination of the discrete coefficient values with
which the overall criteria are met.
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Optimization of Infinite-Precision

Coefficients

The goal is achieved by solving 2M problems of the
following form. Find the filter coefficients h(n) for
n = 0, 1, . . . ,M − 1 as well as β to minimize ψ subject
to the conditions

M−1∑

n=0

h(n) Trig(ωi, n) − β(δp + 1) ≤ −Trig(ωi,M),

−
M−1∑

n=0

h(n) Trig(ωi, n) − β(δp − 1) ≤ −Trig(ωi,M),

for ωi ∈ [0, ωp] and

M−1∑

n=0

h(n) Trig(ωi, n) − βδs ≤ −Trig(ωi,M),

−
M−1∑

n=0

h(n) Trig(ωi, n) − βδs ≤ −Trig(ωi,M),

for ωi ∈ [ωs, π].

Here ψ is −h(n) or h(n) where h(n) is one among the
filter coefficients h(n) for n = 0, 1, . . . ,M − 1.
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Optimization of Finite-Precision

Coefficients

In the above procedure, h(M) was fixed to be unity.
The search for a proper combinations of discrete values
can be conveniently accomplished by using a scaling
constant α ≡ h(M).

For this constant, all the existing values between 1/3
and 2/3 are selected from the look-up table containing
all the possible power-of-two numbers for a given
wordlength and a given maximum number of SPT
terms per coefficient.

Then for each value of α = h(M), the largest and
smallest values of the infinite-precision coefficients are
scaled in the look-up table as

ĥ(n)(min) = αh(n)(min) for n = 0, 1, . . . ,M (23a)

ĥ(n)(max) = αh(n)(max) for n = 0, 1, . . . ,M (23b)

and the magnitude response is evaluated for each
combination of the power-of-two numbers in the ranges
[ĥ(n)(min), ĥ(n)(max)] for n = 0, 1, . . . ,M to check
whether the filter meets the amplitude criteria.
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Numerical Examples

Example 1: N = 37, δp = δs = 10−3, ωp = 0.3π, and
ωs = 0.5π.

Method δNPR (dB) No. Powers of Two No. Adders

Lim and Parker −62.08 43 –
Chen and Willson −60.87 40 –

Proposed −60.48 34 48

Example 2: N = 24, δp = δs = 0.005, ωp = 0.3π,
and ωs = 0.5π.

Method δNPR (dB) No. Powers of Two No. Adders

Samueli −42.17 24 35
Li et al. −43.33 24 –

Chen and Willson −43.97 24 33
Proposed −44.09 21 30

If redundancies within the coefficients are utilized only
26 adders are required to meet the specifications.
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Responses for Examples 1 and 2
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Optimized Finite-Precision Coefficient

Values for the FIR Filter in Example 1

h(0) = h(37) = −2−11

h(1) = h(36) = 0

h(2) = h(35) = +2−9 − 2−12

h(3) = h(34) = +2−9

h(4) = h(33) = −2−9 − 2−11

h(5) = h(32) = −2−7 + 2−9 − 2−11

h(6) = h(31) = 0

h(7) = h(30) = +2−6 − 2−8

h(8) = h(29) = +2−7 + 2−9

h(9) = h(28) = −2−6 + 2−8 − 2−10

h(10) = h(27) = −2−5 + 2−8 + 2−12

h(11) = h(26) = 0

h(12) = h(25) = +2−4 − 2−6 − 2−9

h(13) = h(24) = +2−5 + 2−8 + 2−10

h(14) = h(23) = −2−4 + 2−6 − 2−10

h(15) = h(22) = −2−3 + 2−6 + 2−8

h(16) = h(21) = 0

h(17) = h(20) = +2−2 + 2−6

h(18) = h(19) = +2−1
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Effective Implementation Exploiting

Coefficient Symmetry for the

Multiplierless FIR Filter in Example 1
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