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Polynomial-Based Interpolation for Digital 
Signal Processing (DSP) and Telecommuni-

cation Applications 
 

• This pile of lecture notes is mainly based on the re-
search work done by Dr. Jussi Vesma and the lecturer 
during the last five years. 

• Later on, Djordje Babic and Prof. Markku Renfors 
have been provided contributions to this research. 

• Many thanks to Vesma, Babic, and Renfors for their 
help in preparing this pile of lecture notes. 
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Contents of this Talk: 

1.  Interpolation Filters under Considerations and 
Applications 

2.  Statement of the Problem for Polynomial-Based 
Interpolators 

3.  Hybrid Analog/Digital Model to be Mimicked 
Digitally 

4.  Efficient Digital Implementation: Modified Far-
row Structure 

5.  Optimization in the Frequency Domain 

6. Application Examples: 

a) Design of FIR filters with an adjustable frac-
tional delay 

b) Up-sampling between arbitrary sampling rates 

c) Down-sampling between arbitrary sampling 
rates 

d) Symbol time adjustment in all-digital receivers 

e) Processing of continuous-time signals based on 
its discrete-time counterpart sequence 
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Applications for Interpolation Filters  

• Timing adjustment in all-digital receivers (symbol 
synchronization) 

• Time delay estimation 

• Conversion between arbitrary sampling frequencies 

• Echo cancellation 

• Phased array antenna systems 

• Speech coding and synthesis 

• Derivative approximation of discrete-time signals 

• Computer simulation of continuous-time systems 

• ML symbol timing recovery in digital receivers 
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Interpolation Filters  
 
• In many DSP and telecommunication applications there is a 

need to know the values of the signal also between the exit-
ing discrete-time samples x(n) as shown in Fig. 1. 

• Special interpolation filters  can be used to compute new 
sample values y(l)=ya(tl) at arbitrary  points t l =(nl +µl)Tin 
between the existing samples x(nl ) and x(nl +1). Here, Tin is 
the sampling period. 

• Here, ya(t) approximates either the original continuous-time 
signal xa(t) or the signal obtained with the aid of the exist-
ing discrete-time samples x(n) using the sinc interpolation. 

• The output sample time is determined by nl Tin, the location of 
the preceding existing sample, and the fractional interval  
µl∈[0,1), the difference between t l  and nl Tin as a fraction of 
Tin. 

 

= x(n)
= y(l)

µµµµ    lTin

ya(t)

tltl−−−−1 tl++++1 Time tnlTin((((nl−−−−1)Tin ((((nl++++1)Tin ((((nl++++2)Tin ((((nl++++3)Tin((((nl−−−−2)Tin((((nl−−−−3)Tin

 

Fig. 1. Interpolation in the time domain. 
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Statement of Discrete-Time Interpolation Problem  

Interpolation filter
h(k, µl)

y(l )x(n)

nl µl  

Fig. 2. Simplified block diagram for the interpolation filter. 

Given the input sequence x(n) as well as the time instant t l  
of the l th output sample y(l)=ya(tl), 

Find the control parameters nl and µl in Fig. 2 as 
t l =(nl +µl)Tin, that is 

 �� inll Ttn /=   and  ��− inlinll TtTt //=µ  (1)  

and determine y(l) according to the following convolution: 

 �
−

−=
−=

12/

2/

),()()(
N

Nk
ll khknxly µ  (2) 

where N (even) is the filter length and h(k, µl) is the dis-
crete-time impulse response of the interpolation filter.  
 

Comment: There are N/2 samples and before and after the 
time instant t l  and the impulse-response coefficients 
h(k, µl) depend on  µl.  
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Statement of the Interpolation Problem  

Given N, find  the impulse-response coefficients h(k, µl) 
for k=−N/2+1, −N/2+2,···, N/2 to meet the following 
two conditions: 

1. Optimize them such that y(l)=ya((nl +µl)Tin) for all 
values of µl ∈[0,1), where ya(t) approximates accord-
ing to some time-domain or frequency-domain crite-
rion the signal  

 

( )[ ] ( )[ ]�
∞

−∞= −−=
n inininina TnTtTnTtnxtx //sin)()( ππ . 

 

2. The convolution 

  �
−

−=
−=

12/

2/

),()()(
N

Nk
ll khknxly µ   (2) 

can be implemented digitally  using an efficient struc-
ture. 
 

• In Condition 1, the frequency-domain criteria are usu-
ally preferred for DSP and telecommunication applica-
tions. 
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Various Approaches to Solve the Stated Problem 

• There exist the following three approaches to solve 
our problem: 

1. Fractional delay (FD) filter approach.  

2. Use some classical interpolation method to calculate 
y(l), e.g., Lagrange or B-spline interpolation (time-
domain approach). 

3. Utilize the analog model for the interpolation filter 
(frequency-domain approach). 

 

Here, we concentrate on the last approach. 
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Hybrid Analog/Digital Model to be Mimicked  

y(l)x(n)
DAC ha(t)

Resample at the instant
   tl = ( nl +µµµµ l )Tin

ya(t)xs(t)

 

Fig. 3.  Analog model for the interpolation filter. 

• In this model,  

  �
∞

−∞= −=
n inas nTtnxtx )()()( δ     (3) 

   and  

 .)()()()()( ��
∞

−∞=

∞

∞−

−=−=
k

inaasa kTthkxdthxty τττ  (4) 

• Assuming that ha(t) is zero outside the interval 
−−−−NTin /2≤≤≤≤  t<NTin /2, y(l) obtained by sampling ya(t) at 
tl  is given by 

 .))(()()()(
12/

2/
�

−

−=
+−==

N

Nk
inlalla Tkhknxtyly µ  (5) 
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Hybrid Analog/Digital Model to be Mimicked  

• By comparing Equations (2) and (5), that is,  

 �
−

−=
−=

12/

2/

),()()(
N

Nk
ll khknxly µ  (6) 

  and 

 .))(()()()(
12/

2/
�

−

−=
+−==

N

Nk
inlalla Tkhknxtyly µ  (7) 

   it can be seen that the impulse responses of the analog and 

   discrete-time filters are related as follows: 

 ))((),( inlal Tkhkh µµ +=  (8) 

for k=−N/2, −N/2+1,···, N/2−1.  

• In the causal case, ha(t) is delayed by NTin/2, i.e., the im-
pulse response is given by ha(t − NTin/2). 

• In this case, y(l) obtained NTin/2 time units later is given 
by  

 ( ) )(( ).2/2/ )(
1

0
inla

N

k
l TNkhkNnxly −+−+=�

−

=

µ  (9) 

• In the sequel, the non-causal ha(t) [Equation (7)] and the 
causal ha(t − NTin/2) [Equation (9)] are used for the design 
and implementation purposes, respectively. 
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Why to Use the Analog Model? 

• Interpolation is generally considered as a time-domain 
problem of fitting polynomial through the existing 
samples, which is not very practical approach for DSP 
and telecommunication applications. 

• These include the Lagrange and B-spline interpola-
tions 

• This is because the time-domain characteristics of the 
input sequence x(n) are not usually known. What is 
usually known is the frequency-domain performance 
of the signal. 

• It should be pointed out that recently Atanas Gotchev, 
Karen Egiazarian, and Tapio Saramäki have improved 
the performance of B-splines in interpolation prob-
lems, especially in the case of images, by using modi-
fied B-splines consisting of a weighted sum of odd-
order B-splines. Contact: saram@vip.fi (home e-mail 
address of Saramäki). 

• The main idea is to determine the weights in such a 
manner that the resulting filter effectively preserves 
the baseband of interest and attenuates the corre-
sponding images. 
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Why to Use the Analog Model? 

• The use of the analog model converts the interpolation 
problem from the time-domain to the frequency do-
main in a manner to be will be seen later on. 

 

Synthesis problem for in general: Determine ha(t) such 
that 

1. The overall system of Fig. 3 can be implemented digi-
tally using an efficient structure. 

2. It provides the desired filtering performances. 

 

 

y(l)x(n)
DAC ha(t)

Resample at the instant
   tl = ( nl +µµµµ l )Tin

ya(t)xs(t)

  

Fig. 3.  Analog model for the interpolation filter. 
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Desired ha(t) leading to an Efficient Implementation 

• Consider the following impulse response of an analog filter 
as 

 � �
−

−= =
−=

12/

2/ 0

),()()(
N

Nn

M

m
ma nTtnfncth  (10a) 

where  

 )1()1()( −−−= ncnc m
m

m  (10b) 

for m=0, 1, ···, M and n=0, 1,···, N/2−1 are the un-
knowns and  

 
m

inT

t
tmf ��

�

�
��
	


 −= 12
),(  (10c) 

are the basis functions shown below.  

0 1
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0 1
−1

1

Time in T
in  

Fig. 4. Basis functions ),( tmf  for m=0, 1, 2, and 3. 
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Desired ha(t) leading to an Efficient Implementation 

• Alternatively, this impulse response can be expressed as 

 � �
−

= =
=

12/

0 0

),,()()(
N

n

M

m
ma tmngncth  (11a) 

where cm(n)’s are unknown coefficients and g(n,m,t)’s are 
the new basis functions given by 

�
�
�
�

�

�
�
�
�
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�
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T
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 (11b) 

−2 −1 0 1 2
−1

0

1

Time in T
in

A
m

pl
itu

de

 

Fig. 5. The basis function g(n,m,t) for n=1 and m=3. 

Figure 5 shows an example basis function, whereas Fig. 6 
shows how the overall impulse response can be constructed 
using weighted basis functions. 
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Example on how to construct ha(t) for N=8 and 
M =3.   

0

0.6

−0.5

0

0.5

−0.1
0

0.1

−0.1
0

0.1

−4 −3 −2 −1 0 1 2 3 4

0

0.5

1

Time in T
in

(a)

(b)

(c)

(d)

(e)

 

Fig. 6. Construction of the overall impulse response ha(t) for N=8 

and M=3. The weighted basis functions �
−

=

12/

0

),,()(
N

n
m tmngnc  for  

m= 0, m= 1, m= 2 , and m= 3  are shown in (a), (b), (c), and (d). 
(e) The resulting impulse response ha(t) obtained as a sum of these 

responses. 
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Characteristics of the impulse response ha(t) 

• The resulting ha(t) is characterized by the following at-
tractive properties: 

1) ha(t) is nonzero for −NTin/2≤ t<NTin/2. 
2) The length of the filter N is an even integer. 
3) ha(t) is a piecewise-polynomial of degree M in each 

interval nTin≤ t<(n+1)Tin for n=−N/2, −N/2+1,···, 
N/2−1. 

4) ha(t) is symmetrical, that is ha(−t)=ha(t) except for 
the time instants t=nTin for n = −N/2, −N/2+1, ···, 
 N/2. 

• Properties 1, 2, and 3 guarantee the corresponding causal 
system with impulse response ha(t − NTin /2) can be im-
plemented using an efficient digital implementation. 

•  The role of Property 4 is twofold. 

1) For the causal system, the phase response is linear. 

2) In the modified Farrow to be described later, the 
fixed  FIR filters have either a symmetrical or anti-
 symmetrical impulse responses. This enables us to 
utilize the coefficient symmetry, reducing the number 
of  multipliers in the implementation compared to the 
original Farrow structure. 
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Modified Farrow Structure  

• Substituting 

 � �
−

= =
=

12/

0 0

),,()()(
N

n

M

m
ma tmngncth  (11a) 

where  

�
�
�
�

�

�
�
�
�




�

−<≤+−
��
�

�
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−

++−

+≤<
��
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�
��
	



−

−

=

otherwise            0

)1(for  1
))1((2)1(

)1(for      1
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),,(
inin

m

in

in
m

inin

m

in

in

nTtTn
T

Tnt

TntnT
T

nTt

tmng

(11b) 

into 

 ( ) )(( ).2/2/ )(
1

0
inla

N

k
l TNkhkNnxly −+−+=�

−

=

µ  (9) 

gives, after some manipulations, the formula given in 
the following transparency. 
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Modified Farrow Structure  

 ( ) ,12)( )(
0
�

=
−=

M

m

m

llm nvly µ  (12a) 

where 

 .)2/()2/()(
1

0

kNnxNkcnv l

N

k
mlm −+−= �

−

=
 (12b) 

• The resulting implementation form shown in Fig. 7 in the 
next transparency.  

• This structure is characterized by the following properties: 

1) There exist M+1 fixed FIR filter transfer functions 
   ,,1 ,0for   )2/()(

1

0
MmzNkczC

N

k

k
mm �=−=�

−
=

− with 

the following symmetry properties:  

a) For m is zero or even, )2/()12/( kNckNc mm −−=+−  

for k=0, 1,···, N/2−1. 

b) For m odd, )2/()12/( kNckNc mm −−−=+−  for k=0, 

1,···, N/2−1. 

2) The desired output sample value y(l)  at t l =(nl +µl)Tin is 
obtained by multiplying the output of the mth FIR filter 

output by ( )m

l 12 −µ  and adding the result.  

3) The last input sample is x(nl+N/2). 

  18 

 

Tapio Saramäki 
Tampere University of Technology 

Modified Farrow Structure  

x(nl    ++++    N////2222)

v0(nl)v1(nl)v2(nl)vM(nl)

CM(z) C0(z)C1(z)C2(z)

2222µµµµl-1

y(l)

 
(a) 

2222µµµµl     −−−−    1111 y(l)

x(nl    +    N/2)

−−−−1
Z

cM(N/2    −−−−    1)

cM(−−−−N/2    ++++    1)

cM(−−−−N/2)

−−−−1
Z

−−−−1
Z

−−−−1
Z

c1(N/2    −−−−    1)

c1(−−−−N/2    ++++    1)

c1(−−−−N/2)

−−−−1
Z

−−−−1
Z

c0(N/2    −−−−    1)

c0(−−−−N/2    ++++    1)

c0(−−−−N/2)

vM(nl) v1(nl) v0(nl)

 
(b) 

Fig. 7.  Modified Farrow structure. (a) Basic structure. (b) Details. 
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Frequency-Domain Criteria 

y(l)x(n)
DAC ha(t)

Resample at the instant
   tl = ( nl +µµµµ l )Tin

ya(t)xs(t)

 

Fig. 3.  Analog model for the interpolation filter. 

• For the overall system of Fig. 3, the Fourier transform 
of ya(t) is related to that of the sequence x(n) or 
equivalently to that of the signal 

�
∞

−∞= −=
n inas nTtnxtx )()()( δ  through 

 
�

∞

∞−=

−=

==

k
inaina

Ffj
aa

kFfjXFfjH

eXfjHfjY in

))(2()2(

)()2()2( /2

ππ

ππ π

 (13) 

where Fin  = 1/Tin  is the sampling rate of the input sig-
nal    and Ha( j2πf) is the Fourier transform of the recon-
struction    filter with impulse response ha(t). 
• The last form of Equation (13) is for the case where 

)()( ina nTxnx =  are samples of a continuous-time signal 
)(txa  with )2( fjXa π  being its Fourier transform. 
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Role of ha(t) in the Frequency Domain  

As shown below, the role of the reconstruction filter with im-
pulse response ha(t) is to attenuate the extra images of 

�
∞

−∞= −=
n inas nTtnxtx )()()( δ  and to preserve the signal 

components only in the original baseband [0,Fin /2]. 

Xa(2j π f )

 f

 Fin/2

 αFin/2

 

Fig. 8. The spectrum of the original continuous-time signal band-
limited to inFf α≤ . The sequence is formed as )()( ina nTxnx = . 

X(ej2π f ////Fin)

 f

Ha( j2πf)

 Fin/2  Fin  2Fin

 (1−−−−α)Fin

 Fin

 1/Fin

 

Fig. 9. The spectrum of �
∞

−∞= −=
n inas nTtnxtx )()()( δ , denoted 

by X(ej2π f ////Fin) and the frequency response of the reconstruction filter 
with impulse response ha(t), denoted by Ha( j2π f ). 
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Criteria for the Uniform Sampling: Interpolation 
and Decimation 

• If y(l) is generated at the time instants outl lTt = , then 

 �
∞

∞−=

−=
k

outaout
Ffj kFfjYFeY out ))(2()( /2 ππ , (14) 

where Fout =  1/Tout is the sampling rate of the output signal 
y(l) and the baseband of interest is [0, Fout/2]. 

• The case 1/ >= inout FFβ  corresponds to the interpolation. 

• The case 1/ <= inout FFβ  corresponds to the decimation. 

• In both cases, the ideal response for Ha( j2π f ) avoiding both 
imaging and aliasing is given by 

 

 ( )
�


�

>
≤≤

=
/2,for          0

 /20for    /1

C

Cin

Ff

FfF
fD  (15a) 

where 

 ( )outinC FFF ,min= . (15b) 

• Note that in the interpolation case, it is enough to attenuate 
the images of X(ej2π f ////Fin). 
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• In the decimation case, X(ej2π f ////Fin) should be band-limited 
into the range [0, Fout/2], that is, the region [ Fout/2, Fin/2] 
should be attenuated by Ha( j2π f) in order to avoid aliasing. 
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Practical Criteria  

• Like for conventional digital interpolators and decimators, 
the criteria can be stated as 

 [ ]ppainp fffjHF ,0for      1)2(1 ∈+≤≤− δπδ  (16a) 

 ssain ffjHF Ω∈≤ for      )2( δπ , (16b) 

where 2/ Cp Ff <  and 

 

[ )
[ )

[ ]
�
�
�

�

��
�




�

+−

∞−
∞

=Ω
∞

=

C. Typefor    ,

B Typefor                    ,

A Typefor                       ,2/

1
�
k

pCpC

pC

C

s

fkFfkF

fF

F

 (16c) 

• For Type A, no aliasing or imaging is allowed. 

• For Type C decimation case, aliasing is allowed into the 
transition band [fp, Fout/2]. For Type B, aliasing into this 
band is allowed only from band [ Fout/2, Fout−fp]. 

• In the interpolation case, Types B and C are useful if most 
of the energy of the incoming signal is in the range [0, fp]. 
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The frequency response for the analog filter with 
impulse response ha(t) 

• After some manipulations, the frequency response can be 
expressed as 

 � �
−

= =
=

12/

0 0

),,()()2(
N

n

M

m
ma fmnGncfjH π , (17) 

 where G(n,m,f) is the frequency responses of the basis  func-
tion g(n,m,t), as given by Eq. (11b) in transparency 13. 

• Since g(n,m,t) is symmetrical around t=0, G(n,m,f ) is real 
and is given by 
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Optimization Problems 

• The very attractive property of the above Ha( j2πf ) is that 
it is linear with with respect its unknowns cm(n). 

• These unknowns can be easily found to minimize  

 ( ))()2()(max fDfjHfW
Xf

a −
∈

=∞ πδ   (19) 

or 

 ( )[ ] dffDjHfW
X a

2

2 )()2()(� −= πδ    (20) 

subject to the following time-domain conditions of ha(t):  

1) Case A: There are no time-domain conditions. 

2) Case B: ha(t)  is continuous at t = kTin for k=±1, 
±2,···,   ±N/2−1. 

3) Case C: ha(0)=1 and ha(kTin)=0 for k=±1, ±2,···, 
±N/2. 

4) Case D: The first derivative of ha(t) is continuous at t 
= kTin   for k=0 and for k=±1, ±2,···, ±(N/2−1). 

• The first and second criteria, as given by Eqs. (19) and 
(20) correspond to the optimization in the minimax and 
the least-mean-square sense subject to the given time-
domain constraints, respectively. 
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•  Here X⊂ [0,∞) is a compact subset and D( f) is an arbi-
trary desired function (continuous) and W( f) is an arbi-
trary weighting function (positive). 

• Here, the approximation region X consists of a set of 
passband and stopband regions. 

• The actual optimization can be accomplished in a manner 
similar to the design of linear-phase FIR filters. 

• Optimization algorithms have been implemented in Mat-
lab. For minimax problem, linear programming can be 
used to optimize the filter coefficients. 

• For both problems, the time domain conditions can be in-
cluded in the problem in such a manner that they become 
unconstrained problems. 

• This makes the overall optimization algorithms very fast. 

• It should be pointed out that Case C time-domain condi-
tion guarantees that if the new sampling instant occurs at 
the instant of the existing sample, then the sample value 
is preserved. 

• Case D time-domain condition is of importance when de-
termining the derivative of a continuous-time signal with 
the aid of its discrete-time samples and a generalized 
modified Farrow structure. 
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Parameters for the optimization 

• Design parameters for the optimization programs are 
the following: 

1. Edge frequencies for passband(s) and stopband(s). 

2. Desired amplitude and weight for every band. 

3. N, the length of the filter. 

4. M, the degree of the interpolation. 

5. The number of grid points. 

6. Time-domain constraints: 

1) Case A: There are no time-domain conditions. 

2) Case B: ha(t)  is continuous at t=kTin for k=±1, 
±2,···,   ±N/2−1. 

3) Case C: ha(0)=1 and ha(kTin)=0 for k=±1, ±2,···, 
±N/2. 

4) Case D: The first derivative of ha(t) is continuous 
at t=kTin   for k=0 and for k=±1, ±2,···, ±(N/2−1). 

 

• Before introducing the applications, two Case A de-
sign examples are considered. 
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Optimized Case A minimax design 

• M = 7,N= 24,  [ ] [ )∞= ,6.04.0,0 inin FFX � ,  D( f)  is unity 
and zero on the first and second bands, whereas W( f)  is 
0.002 and 1, respectively.  
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Optimized Case A least-squared design 

•  M = 5, N= 8, [ ] [ )∞= ,75.035.0,0 inin FFX � ,  D( f)  is unity 
and zero on the first and second bands, whereas W( f)  is 
0.02 and 1, respectively.  
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Application A: FIR Filters with an Adjustable 
Fractional Delay 

•  Using µl = 1−λ, the delay of the modified Farrow structure of 
Fig.7 in transparency 18 becomes D =  N/2 −1 +λ, where 
N/2−1 is an integer delay and λ is a fractional delay with 
0 ≤ λ < 1.  

• In this case, instead of ,12 −lµ  1−2λ is used. 

•  For this structure, the transfer function is expressible as 
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where Ψ denotes adjustable parameters cm(k) for k=0,1,···, 
N/2−1 and m=0,1,  ···, M. 

• Using a nonlinear optimization procedure, following prob-
lem can be solved: Given N, M, εa, and the passband region 
Ωp = [0, ωp], ωp < π, find Ψ to minimize 

( ) �
�

�
�
�

� +−−Ψ−=∆
Ω∈<≤

)12/(,,argmaxmax
10

λωλω
ωλ

NeH j
p

p

 (22a) 

subject to 

  31 

 

31 Tapio Saramäki 
Tampere University of Technology 

 ( ) .1,,maxmax
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Example: ωωωωp    ====    0.75ππππ, N    ====    10, M     ====    4, and εεεεa    ====    0.01. 
∆∆∆∆p    ====    0.0016. 

• Due to that fact that both the amplitude and phase delay er-
rors in the passband are the same for λ and 1−λ, Figs. (c) 
and (d) show the phase delay and amplitude responses only 
for λ = 0, 0.1, 0.2, 0.3, 0.4, and 0.5. 
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Application B: Up-Sampling Between Arbitrary 
Sampling Frequencies 

• The Farrow structure can be directly used for providing the 
increse between an arbitrary input sampling rate Fin and an 
arbitrary output sampling rate Fout. 

• It is desired that Ha( j 2π f) approximates unity for 
0 ≤ f ≤ 0.45Fin with tolerance of 0.001 and zero for f  ≥ 0.5Fin 
with tolerance of 0.00001 (100-dB attenuation). 

• When using the minimax optimization, the given criteria 
are met by N    ====    92 and M     ====    6, as shown on Page 32. This 
implementation requires 7 fixed branch filters of length 92. 

• The implementation can be simplified using fixed linear-
phase FIR interpolators before the Farrow structure, as pro-
posed by Saramäki and Ritoniemi. 

• N ==== 4 and M     ====    3 are required if the sampling rate is in-
creased by a factor of six by using a two-stage fixed inter-
polator with interpolation factors of two and three and FIR 
filters of order 183 and 11, respectively. See Page 51. 

• The block diagram for this multistage implementation is 
shown below. 

2F1(z)
x(n)

2
2FinFin

3F2(z)3
6Fin

Farrow
Structure

y(l)

Fout

Modified

 
 

• Note that the same structure can be used for any Fout > Fin. 
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Direct Design 
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Design with fixed interpolators before the Farrow 
structure: Simultaneous optimization has been used. 
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Application D: Down-Sampling Between Arbitrary 
Sampling Frequencies: First Alternative  

• There exist two alternatives to perform down-sampling. 

• The first alternative is to increase the sampling rate to a 
multiple of the output sampling rate and then to decimate to 
the desired output sampling rate. 

• As an example, consider sampling rate reduction from       
48 kHz to 44.1 kHz using the a structure shown below 

 

 

F1(z)
x(n)

2
Fin

Farrow
Structure

y(l)
4Fout

Modified
F1(z) 2

2Fout Fout  
 

• The passband edge is 20 kHz and aliasing is allowed into 
the band between 20 kHz and 44.1/2 kHz. 

• The passband ripple is 0.0001 and the minimum stopband 
attenuation is 120 dB. 

• To meet these criteria M = 4 and N = 6 are required by the 
modified Farrow structure, whereas the orders of the first 
and second decimator are 4 and 126, respectively. 

• The resulting responses are shown on the next page.  
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Three -stage Decimator using the Modified Farrow 
structure: Simultaneous optimization has been used. 
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Application D: Down-Sampling Between Arbitrary 
Sampling Frequencies: Second Alternative 

• The second alternative is to use the transposed modi-
fied Farrow structure together with fixed decimators. 

• The direct transposed modified Farrow structure is 
shown in the next transparency. 

• Due to the lack of time, this alternative is not consid-
ered in details in this talk. 

• For more information see 
 D. Babic, J. Vesma, T. Saramäki, and M. Renfors,  
“Implementation of the transposed Farrow structure,” in 
Proc. 2002 IEEE Int. Symp. Circuits and Systems, 
Scotsdale, Arizona, USA, 2002, vol. 4, pp. 4−8. 
 

D. Babic, T. Saramäki and M. Renfors, “Conversion be-
tween arbitrary sampling frequencies using polynomial-
based interpolation filters,” in Proc. Int. Workshop on 
Spectral Methods and Multirate Signal Processing, 
SMMSP’02, Toulouse, France, September 2002, pp. 
57−64 
• The main advantage of this structure is that the same 

structure can be used for any input sampling rate Fin > 
Fout. 
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Transposed Modified Farrow structure 
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Fig.10. Transposed modified Farrow structure. 
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Application D: Continuous-Time Signal Processing  

• The Farrow structure can be easily generalized to 
process digitally the reconstructed signal ya(t). 

• These applications include, among others, determin-
ing the derivative or the integral of ya(t).  

• The derivative is widely utilized, for example, in find-
ing the location of the maximum or minimum of the 
signal. 

• The integral can be used to calculate the energy of the 
signal over the given time interval. 

• We concentrate on determining the derivative of ya(t). 
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Generalized Farrow Structure for Determining the 
Derivative of ya(t) 

• In the intervals nTi n≤ t<(n+1)Ti n  for n=0, 1, 2,·ya(t) can 
be expressed as 

 [ ]�
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+= −==
M

m

m
mTnta nvnpty

in
0

)( 12)(),()( µµµ , (23) 

where the vm(n)’s are the output samples of the FIR 
branch filters in the modified Farrow structure. 

 

• The derivative of ya(t) in the intervals is thus given by 
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• The derivative of ya(t) at t = (n+µ)Ti n  can be determined 
by multiplying the vm(n)’s by 2m(2µ−1)m−1, instead of 
(2µ −1) m in the modified Farrow structure. 

• For estimating the derivative, it is desired that Ha(j2πf) 
approximates 1/(2πf) in the passband with the weighting 
equal to 2πf.  

• In the stopband, it is desired to approximate zero with a 
constant weight. 
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Example on the Derivative Approximation 

• It is desired to estimate the continuous-time derivative 
of a discrete-time ECG signal shown in Fig. 11(a).  

• Figures 11(b) and 11(c) show the continuous-time in-
terpolated signal and the derivative signal, respec-
tively.  

• For ha(t) used for determining the derivative signal, 
N=8, M=5, and the passband and stopband edges are 
located at 0.35Fs and 0.65Fs, respectively.  

• When using the minimax optimization criterion with 
weigting equal to 0.035 in the passband and equal to 
unity in the stopband, we end up with ha(t) with the 
amplitude and impulse responses shown in Fig. 12. 
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Continuous-time processing of an ECG signal 
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Fig.11. Continuous-time processing of an ECG signal. (a) Discrete-
time ECG signal. (b) Interpolated continuous-time signal. (c) Con-

tinuous-time derivative. 
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Characteristics of the differentiator 
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Fig.12. Optimized differentiator. (a) Impulse response. (b) Ampli-
tude response 
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Application C: Symbol Synchronization in Digital 
Receivers 

∼

Interpolator
h(k,µl)

Timing
estimation

r(n)

Fin=1/ Tin

y(l)x(n)

µl

Decision
â(l)

ADC
r(t)

Matched filter
hR(n)

nl

 

Fig. 13.  Digital receiver with non-synchronized sampling. 

• The sampling of the received signal is performed by a fixed 
sampling clock, and thus, sampling is not synchronized to 
the received symbols. 

� timing adjustment must be done by digital methods after 
sampling. 

• Can be done by using interpolation filter. 

• Advantages of nonsynchronized sampling: 

− separates the analog and digital parts 
− easy to change the sampling rate  
− sampling frequency does not have to be a multiple of 

the symbol frequency (only high enough to avoid 
aliasing)  

− no need for complex PLL circuit. 
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Practical Case 

• When deriving the frequency-domain specifications for the 
anti-imaging filter ha(t), it is assumed that  

1) The pulse shape of the transmitted signal has the excess 
bandwidth of α and the ratio between the sampling rate 
Fin and the symbol rate is R.  

2) In order to avoid aliasing, it is required that R≥(1+α). 

• Based on these assumptions, the input signal of the interpo-
lator x(n) contains the desired component in the frequency 
range [0, βFin ], where β=(1+α)/R/2 and undesired images 
in the bands [(k−β)Fin, (k+β)Fin] for k=1, 2,···.  

• Therefore, the desired function for Ha(j2π f) is specified by 
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where the stopband region, denoted by Ωs, can be selected as 
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• Two polynomial-based interpolators have been designed in 
the minimax sense to illustrate the use of the above-
mentioned specifications.  

• It is assumed that the received signal has a raised cosine 
pulse shape with the excess bandwidth of α=0.15 and the 
oversampling ratio is R=1.75.  

• The passband edge for both filters is fp=βFin=23/70Fin 
(≈0.33Fin)  

•  Furthermore, it is required that the passband distortion is 
less than δp=0.01 and the minimum stopband attenuation is 
As=50dB. 

• The first filter has a uniform stopband .In order to meet the 
specifications, N=8 and M =3 are required, as shown in 
Figure 21(a) on the next page 

•  The second filter has a non-uniform stopband as given by 
Eq. (31b) and the spectrum of the raised cosine pulse shape 
is used as a weighting function. In this case N=6 and M =3 
meets the requirements giving As=50.0dB and δp=0.01, as 
shown in Figure 21(b) on the next page. 
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Fig. 14. The magnitude response of the interpolation filter (solid 
line), the spectrum for the raised cosine pulse (dashed line) and 
for the reconstructed signal ya(t) (dark area). (a)With uniform 
stopband. (b) With non-uniform stopbands having the raised 
cosine weighting. 
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Properties of Minimax Case A designs 

• Case A: The minimum even value of N can be estimated by  
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  where δp and δs are the maximum deviations of the amplitude 
response from unity for f∈ [0, fp] and the maximum deviation 
from zero for f∈ [ fs,∞).  

• Here, �x� stands for the smallest integer that is larger or equal 
to x. 

• It has been observed that in most cases the above estimation 
formula is rather accurate with only a 2 % error. 

• The next problem is to find the minimum value of M to meet 
the criteria. 

• To illustrate this the following specifications are considered: 

Specifications 1: The passband and stopband edges are at 
fp=0.25Fin and at fs=0.75Fin. 
Specifications 2: The passband and stopband edges are at 
fp=0.25Fin and at fs=0.5Fin. 
Specifications 3: The passband and stopband edges are at 
fp=0.375Fin and at fs=0.675Fin. 
Specifications 4: The passband and stopband edges are at 
fp=0.375Fin and at fs=0.5Fin. 
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Properties of Minimax Case A designs 

• In each case, several filters have been designed in the mini-
max sense with the passband weighting equal to unity and 
stopband weightings of Ws=1, Ws=10, Ws=100, and 
Ws=1000.  

• M, the degree of the polynomial in each subinterval, varies 
from 0 to 12. N, the number of intervals varies from 2 to the 
smallest integer for which the stopband ripple for the ampli-
tude response is less than or equal to 0.0001 (100 dB) for 
Ws=1.  

• For Specifications 1, 2, 3, and 4,, the corresponding small-
est values of N are 12, 24, 24, and 48, respectively. Recall 
that N is an even integer. 

• The following two pages give the results for Case A. 

• For other cases, N is either the same or should be incrased 
by two. 

• For Case C the passband and stopband edges satisfy 

       .2/)1(,2/)1( insinp FfFf ρρ +=−=  
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Specifications 1 and 2: 

Specifications 1: N=2, 4,···, 14 
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Specifications 2: N=2, 4,···, 24 
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Specifications 3 and 4: 

Specifications 3: N=2, 4,···, 24 
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Specifications 4: N=2, 4,···, 48 
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Case A: fs    ====    0.625F in , fp    ====    0.375F in , δδδδp    ====    0.01, 
δδδδs    ====    0.001: N=12; Minimax (solid line): M= 4; Least-
squared (dashed line): M= 5 
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Case B: fs    ====    0.625F in , fp    ====    0.375F in , δδδδp    ====    0.01, 
δδδδs    ====    0.001: N=12; Minimax (solid line): M= 4; Least-
squared (dashed line): M= 5 
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Case C: fs    ====    0.625F in , fp    ====    0.375F in , δδδδp    ====    0.01, 
δδδδs    ====    0.001: N=14; Minimax (solid line): M= 5; Least-
squared (dashed line): M= 5 
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Case D: fs    ====    0.625F in , fp    ====    0.375F in , δδδδp    ====    0.01, 
δδδδs    ====    0.001: N=12; Minimax (solid line): M= 5; Least-
squared (dashed line): M= 5 
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Conclusion 

• An efficient approach has been described for interpolating 
new sample values between the existing discrete-time sam-
ples. 

• This approach has the following advantages: 

•  Design directly in the frequency domain is straight-
forward. 

•  The overall system has an efficient implementation 
form. 

•  The analysis of the system performance is easy. 
•  There exist several DSP applications. 
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