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Shortened Lecture # 3

Polynomial-Based Interpolation for Digital
Signal Processing (DSP) and Telecommuni-
cation Applications

* This pile of lecture notes is mainly based on the re-
search work done by Dr. Jussi Vesma and the lecturer
during the last five years.

e Later on, Djordje Babic and Prof. Markku Renfors
have been provided contributions to this research.

« Many thanks to Vesma, Babic, and Renfors for their
help in preparing this pile of lecture notes.
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Applications for Interpolation Filters

« Timing adjustment in all-digital receivers (symbol
synchronization)

* Time delay estimation

« Conversion between arbitrary sampling frequencies
* Echo cancellation

* Phased array antenna systems

» Speech coding and synthesis

« Derivative approximation of discrete-time signals

« Computer simulation of continuous-time systems

* ML symbol timing recovery in digital receivers
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Contents of this Talk:

1. Interpolation Filters under Considerations and
Applications

2. Statement of the Problem for Polynomial-Based
Interpolators

3. Hybrid Analog/Digital Model to be Mimicked
Digitally

4. Efficient Digital Implementation: Modified Far-
row Structure

5. Optimization in the Frequency Domain
6.Application Examples

a) Design of FIR filters with an adjustable frac-
tional delay

b) Up-sampling between arbitrary sampling rates

c) Down-sampling between arbitrary sampling
rates

d) Symbol time adjustment in all-digital receivers

e) Processing of continuous-time signals based on
its discrete-time counterpart sequence
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Interpolation Filters

* In many DSP and telecommunication applicationsetfiea
need to know the values of the signal also betweerxit-
ing discrete-time samplegn) as shown in Fig. 1.

Specialinterpolation filters can be used to compute new
sample valueg(l)=y,(t) atarbitrary pointst,=(n+p)Ti,
between theexisting samplesx(n;) andx(n+1). Here, T, is
the sampling period.

Here,y,(t) approximates either the original continuous-time
signalx,(t) or the signal obtained with the aid of the exist-
ing discrete-time samplegn) using the sinc interpolation.

The output sample time is determinedry¥;,, the location of
the preceding existing sample and thefractional interval
wd[0,1), the difference between andn T, as a fraction of

N\

HT,

V) ——

M=3)Tin (=T, T2 (V-1)T;, NTig t (DT, ()Tt (03T, Time t

Fig. 1. Interpolation in the time domain.
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Statement of Discrete-Time Interpolation Problem

x(n)_|Interpolation filter | y(
h(kv ul)

ol ]

Fig. 2. Simplified block diagram for the interpolation filter.

Given the input sequenc€n) as well as the time instait
of thelth output samplg(l) =ya(t),

Find the control parametersy and | in Fig. 2 as
ti=(m+Ww)Ti, that is

n =Lt /T, ] and g, =t, /T, -Lt, /T, | 1)

and determing(l) according to the following convolution:

N/2-1
y(h) = 2 x(n, =k)h(k, 1) (2)
k=-N/2
whereN (even) is the filter length anla(k, ) is the dis-
crete-time impulse response of the interpolation filter.

Comment There areN/2 samples and before and after the
time instantt, and the impulse-response coefficients
h(k, ) depend ony,.
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Various Approaches to Solve the Stated Problem

* There exist the following three approaches to solve
our problem:

1.Fractional delay (FD) filter approach.

2.Use some classical interpolation method to calculate
y(), e.g., Lagrange or B-spline interpolatioime-
domain approach.

3.Utilize the analog model for the interpolation filter
(frequency-domain approach).

Here, we concentrate on the last approach.
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Statement of the Interpolation Problem

Given N, find the impulse-response coefficieti&, ;)

for k=—N/2+1, -N/2+2,---,N/2 to meet the following

two conditions:

1.0ptimize them such thg{l) =ya((n +£4)Tin) for all
values ofy, [0,1), wherey,(t) approximates accord-
ing to some time-domain or frequency-domain crite-
rion the signal

X,(t) =X x(n)sin[z(t - nT, )/ T, /[n(t -nT, )/ T,].

2.The convolution

y) =S x(n, - Kh(k, 1) @

k=-N/2
can be implementedigitally using an efficient struc-
ture.

- In Condition 1, the frequency-domain criteria are usu-
ally preferred for DSP and telecommunication applica-
tions.

Tapio Sdramaki
Tampere University of Technology 8

Hybrid Analog/Digital Model to be Mimicked

St a(t) |
x(n) DAC X()= ha(t) O < y(h)

Resample at the instant
t=(n +)Tin

Fig. 3. Analog model for the interpolation filter
* In this model,

Xs )= Z:]o:_oo X(n)a-a (t- nT, ) (3)
and

Va0 =[x -0dr= 3 X, (-KT,).  (4)
-0 k=-00
* Assuming thathy(t) is zero outside the interval
-NTin/2< t<NTy/2, y(I) obtained by sampling(t) at
t; is given by
N/2-1

yO) =vat) = 2 X —Kha(k+4)T).  (5)

k=-N/2
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Hybrid Analog/Digital Model to be Mimicked

* By comparing Equations (2) and (5), that is,

ORIDEGRIL(YY (6)
and
N/2-1
YO =Yalt) = X0 -RR (K +4)T,). (D)
k=-N/2

it can be seen that the impulse responses of tilegand
discrete-time filters are related as follows:

h(k, £4) = ha((k + £4)Tin) ®)

for k=-N/2, -N/2+1,- - - ,N/2-1.

« In the causal caséy(t) is delayed byNT;,/2, i.e., the im-
pulse response is given hyt — NT;/2).

« In this casey(l) obtainedNT;,/2 time units later is given
by

Y= x(n +N/2-K)h,((k+ ~N12)T,). ()

k=0

« In the sequel, the non-cauda(t) [Equation (7)] and the
causalh,(t — NT;,/2) [Equation (9)] are used for the design
and implementation purposes, respectively.
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Why to Use the Analog Model?

» The use of the analog model converts the interpolation
problem from the time-domain to the frequency do-
main in a manner to be will be seen later on.

Synthesis problem for in generalDetermineh,(t) such
that

1.The overall system of Fig. 3 can be implemerutiggt
tally using an efficient structure.

2.1t provides the desired filtering performances.

x(n) Xs(t)
—» DAC >

a(t) I
ha(t) ’ > K&

Resample at the instantT

t=(n +)Tin

Fig. 3. Analog model for the interpolation filter
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Why to Use the Analog Model?

« Interpolation is generally considered as a time-domain
problem of fitting polynomial through the existing
samples, which is not very practical approach for DSP
and telecommunication applications.

* These include the Lagrange and B-spline interpola-
tions

 This is because the time-domain characteristics of the
input sequence(n) are not usually known. What is
usually known is the frequency-domain performance
of the signal.

« It should be pointed out that recently Atanas Gotchev,
Karen Egiazarian, and Tapio Saraméaki have improved
the performance of B-splines in interpolation prob-
lems, especially in the case of images, by using modi-
fied B-splines consisting of a weighted sum of odd-
order B-splines. Contacsaram@vip.fi(home e-malil
address of Saramaki).

* The main idea is to determine the weights in such a
manner that the resulting filter effectively preserves
the baseband of interest and attenuates the corre-
sponding images.
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Desiredh,(t) leading to an Efficient Implementation

« Consider the following impulse response of an apéilter
as

N/2-1 M
h,t)= > > c,(nf(nt-nT) (10a)
n=-N/2m=0
where

Cr (M) =(=D"cy (-n-1 (10b)

for m=0, 1, ---,M and n=0, 1,---,N/2-1 are the un-

knowns and
F(mit) = (ZI "1j (10¢)
T
are the basis functions shown below.
1 1 1 1
o
>
211 N,
€
<-1 -1 -1 -1
0 10 10 10 1
Time inTin

Fig. 4. Basis function§ (m,t) form=0, 1, 2, and 3.
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Desiredh,(t) leading to an Efficient Implementation Example on how to constructh,(t) for N=8 and
. o M=3.
« Alternatively, this impulse response can be expess -
N/2-1 M
ha®= 2 cnManmy (113) o5 @
n=0 m=0
o S
wherecy,(n)’'s are unknown coefficients arg{n,m,)’s are 0.5 ‘ ‘ ‘ " (b)
the new basis functions given by o ]
-0.5¢c I 1 I | I 7
_ d 0.1 ‘ ‘ cH
(m _1] for nT, <t<(n+1T, _O?V/\\/N\\//\\Q
m (11b) oaf ‘ ‘ ‘ ‘ )
g(nmt)= (—1)m[2(“(”+1)Tm)_1j for - (n+1)T, <t <-nT, T — W\H 1
T it ‘ : : ‘ | : ‘ .
0  otherwise (e)
0.5r
(0] 1 0 I I I I I I I
S -4 -3 -2 -1 0 1 2 3 4
= ol Time inT.
Q. n
IS
< 1 Fig. 6. Construction of the overall impldllsze1 respdamge for N=8
=2 -1 0 1 2 ;
Time inT,_ andM=3. The weighted basis functiong c,,(Mg(n,m,t) for
n=0

m= 0,m= 1,m= 2, andn= 3 are shown in (a), (b), (c), and (d).
(e) The resulting impulse resportsét) obtained as a sum of these
Figure 5 shows an example basis function, wherégs@- responses.

shows how the overall impulse response can be rcmtest

using weighted basis functions.

Fig. 5. The basis functiog(n,m,t) forn=1 andm=3.
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Characteristics of the impulse responsh,(t) Modified Farrow Structure
» The resultinghy(t) is characterized by the following at- « Substituting
tractive properties: N2 M
1) hy(t) is nonzero forFNT/2<t<NT;/2. ho()= 2 > cn(ng(nmit) (11a)
=0 m=0
2) The length of the filteN is an even integer. h o
where
3) hy(t) is a piecewise-polynomial of degrdtin each .
interval nT,<t<(n+1)T,, for n=-N/2, -N/2+1,- -, (Z(I—HT.H) _1] for nT, <t<(n+1)T,
N/2-1. Tin
. (11b)
4) hy(t) is symmetrical, that if,(—t)=h,(t) except for g(n,mt) = (_1)m[2(t+(n+1)'l',n)_1j for - (n+1T, <t<-nT.
the time instantst=nT;, for n=-N/2, -N/2+1, -, in
N/2. 0 otherwise
« Properties 1, 2, and 3 guarantee the correspomdungpl
system with impulse responggt — NT;,/2) can be im- into
plemented using an efficient digital implementation .
« The role of Property 4 is twofold. y()=> x(n +N/2-k)h ((k+x -N/2)T,). (9)
k=0
1) For the causal system, the phase response#s lin
2) In the modified Farrow to be described later, the gives, after some manipulations, the formula given in
fixed FIR filters have either a symmetrical or anti- the following transparency.

symmetrical impulse responses. This enables us to
utilize the coefficient symmetry, reducing the nanb

of multipliers in the implementat compared to the
original Farrow structure.



Tapio Saramaki
Tampere University of Technology 17

Modified Farrow Structure

OESANCHCTEE (12a)
where

V()= ¢, (k-N/2x(n +N/2-k). (12b)

* The resulting implementation form shown in Fig.n7the
next transparency.

« This structure is characterized by the followingperties:
1) There existM+1 fixed FIR filter transfer functions
Cu(@=Y1oc,(k=N/2)z™" for m=021---,M with
the following symmetry properties:
a)Formis zero or everg,,(N /2-1+k) =c,,(-N /2-k)

for k=0, 1,---N/2-1.
b) For m odd, ¢, (N /2-1+k)=—c,(-N /2-k) for k=0,
1,---N/2-1.

2) The desired output sample val(B® att,=(n+W)T;, is
obtained bymultiplying the output of thenth FIR filter

output by(24, —1)" and adding the result.
3) The last input sample x$n+N/2).
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Frequency-Domain Criteria

St a(t) |
x(n) DAC X()= ha(t) O < y(h)

Resample at the instant
t=(m +4)Tin

Fig. 3. Analog model for the interpolation filter

« For the overall system of Fig. 3, the Fourier transform
of yu(t) is related to that of the sequenkg) or

equivalently to that of the signal
xs(t) =" x(n)d,(t-nT,) through
Y, (j2r) =H (j2r )X (e™*"'™) =
(13)

=H,(j278)F, Y X, (j27(f ~kF,)
k=—o0
whereFi, = 1/Tj, is the sampling rate of the input sig-
nal andHy(j27f) is the Fourier transform of the recon-
struction filter with impulse responsi(t).
» The last form of Equation (13) is for the case where
x(n) =x_(nT_ ) are samples of a continuous-time signal
x, (t) with X_(j27) being its Fourier transform.
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Modified Farrow Structure

N |
| ] | l
oY) C(2 G G2
W) vAn) vy(y) V() y(l)
241 D—X—D—)—D
(a)
x(n + N/2) .
Gi(-N/2)

Gy(N/2 - 1)
+

VM(n\)

2u-1

(b)

Fig. 7. Modified Farrow structure. (a) Basic structure. (b) Details.
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Role ofhy(t) in the Frequency Domain

As shown below, the role of the reconstructiorefilvith im-
pulse responsd,(t) is to attenuate the extra images of

xs(t) = Z:=_m x(N)J,(t—nT,,) and to preserve the signal
components only in the original baseb§0d,/2].

X«(2] 7if)

aFi,/2

Fin/2

Fig. 8. The spectrum of the original continuous-time signal band-
limited to | f| < aF,,. The sequence is formed #n) = x,(nT,,).

Fin /

X(eJZHf IFin)

Fo2 Fn 2R

Fig. 9 The spectrum ofs(t) = >~ x(n)J, (t —nT,,), denoted

by X(e/#™F" and the frequency response of the reconstruction filter
with impulse respondey(t), denoted byd,(j271f).
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Criteria for the Uniform Sampling: Interpolation
and Decimation

* If y(I) is generated at the time instafts IT_,, then
Y(eJZﬂIFM) = Fout zYa(JZIT( f - kFout))’ (14)
k=00

whereF, = 1/Toy is the sampling rate of the output signal

y(I) and the baseband of interesidsF,./2].
» The caseB = F,,/F,, >1 corresponds tthe interpolation.

* The casef=F_, / F, < Torresponds tthe decimation.

« In both cases, the ideal responseHg(j27f) avoiding both
imaging and aliasing is given by

1/F, forO<f<F./2
D(f)= (15a)
0 for f > F./2,
where
FC = min(Fm’ Fout)' (l5b)

* Note that in the interpolation case, it is enouglattenuate
the images oK(e/?™ /™M,
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Practical Criteria

* Like for conventional digital interpolators and deators,
the criteria can be stated as

1-6,<F,|H,(j27 ) <1+, for fO[0,f,| (16a)
F.H.(j27f)|< o, for fOQ,, (16b)

where f <F./2 and

[F. /2,0) for TypeA
Q.= [FC - fp,oo) for TypeB (16¢)

UJlkF. - £, .kF. + f,] for Typec.
k=1

 For Type A, no aliasing or imaging is allowed.

* For Type C decimation case, aliasing is allowed ithte
transition bandf, Fo./2]. For Type B, aliasing into this
band is allowed only from barjd=,/2, FourTy].

« In the interpolation case, Types B and C are usefubst
of the energy of the incoming signal is in the @@ fy].

$ Tapio Saamaki
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« In the decimation cas&(e”"F") should be band-limited

into the rangd0, F../2], that is, the regiofi Fou/2, Fin/2]
should be attenuated bix(j27f) in order to avoid aliasing.
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The frequency response for the analog filter with
impulse responsén,(t)

» After some manipulations, the frequency response b
expressed as

. N/2-1 M
Ha(JZﬂ): Z Zcm(n)G(nrm!f)' (17)
n=0 m=0
whereG(n,m,f) is the frequency responses of the bdaisc-
tion g(n,m,t), as given by Eq. (11b) in transparency 13.
 Sinceg(n,m,t) is symmetrical arount=0, G(n,m,f) is real
and is given by

sin(7T;y)

2cos@7AT,, (n +%))[(—1)m’2m¢(m, )+ :
G(nm, f)= for meven (182)

2(-2)™D 2 misin@7AT,, (n+1))®(m, ) for modd,

where

el em (<D [sin(m"l’in) _ cos(riT,)

®d(m, f) = ; (T, (2K)! T, (2k +1) j (18b)
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Optimization Problems

e The very attractive property of the abadvgj271) is that
it is linear with with respect its unknownscn,(n).

e These unknowns can be easily found to minimize

3, = max|W(F)(H,(j2rf) - D(f))|  (19)
f OX

or
3, =[ W(t)(H,(j2m] - D)) df (20)

subject to the following time-domain conditionstft):
1) Case AThere are no time-domain conditions.
2) Case B hy(t) is continuous at = kT;, for k=1,

+2,--, £N/2-1.
3) Case C hy(0)=1 andhy(kT;,)=0 for k=1, £2,---,
+N/2.

4) Case D The first derivative oh,(t) is continuous at
= kT, for k=0 and fork=+1, +2,--- £(N/2-1).

e The first and second criteria, as given by Eqs) @t
(20) correspond to the optimization in the mininad
the least-mean-square sense subject to the gima ti
domain constraints, respectively.
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Parameters for the optimization

» Design parameters for the optimization programs are

the following:
1.Edge frequencies for passband(s) and stopband(s).
2.Desired amplitude and weight for every band.
3.N, the length of the filter.
4.M, the degree of the interpolation.
5.The number of grid points.
6.Time-domain constraints:
1) Case AThere are no time-domain conditions.
2) Case B hy(t) is continuous at=kT;, for k=%1,
2.+, £N/2-1.
3) Case Chy(0)=1 andh,(kTi,)=0 for k=+1, £2,---,
+N/2.

4) Case D The first derivative ohy(t) is continuous
att=kT;, for k=0 and fork=%1,+2,--- £(N/2-1).

» Before introducing the applications, two Case A de-
sigh examples are considered.
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¢ HereX[0,») is a compact subset aiqf) is an arbi-
trary desired function (continuous) akdf) is an arbi-
trary weighting function (positive).
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« Here, the approximation regiod consists of a set of
passband and stopband regions.

< The actual optimization can be accomplished in armea
similar to the design of linear-phase FIR filters.

« Optimization algorithms have been implemented irnt-Ma
lab. For minimax problem, linear programming can be
used to optimize the filter coefficients.

* For both problems, the time domain conditions cainb
cluded in the problem in such a manner that thepine
unconstrained problems.

 This makes the overall optimization algorithms viarst.

« It should be pointed out th&@ase Ctime-domain condi-
tion guarantees that if the new sampling instastic at
the instant of the existing sample, then the samaleae
is preserved.

« Case Dtime-domain condition is of importance when de-
termining the derivative of a continuous-time sigwah
the aid of its discrete-time samples and a gerzedli
modified Farrow structure.
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Optimized Case A minimax design

*« M=7N=24, X =[0,04F, |U[06F,,®), D(f) is unity

and zero on the first and second bands, wheréds$ is
0.002 and 1, respectively.

Magnitude in dB

0 05 1 15 2 25 3 35
Frequency |rF‘n

a
o
o

o
1Ny

Impulse response (t)
o
iy

0]

N, Y U OO SO SO A R S
-12-10 -8 -6 -4 -2 0 2 4 6 8 10 12
Time |nT‘n
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Optimized Case A least-squared design Application A: FIR Filters with an Adjustable
. M=5,N=8, X =[0,035F, JU[O75F, , ), D(f) is unity Fractional Delay
and zero on the first and second bands, wheréds3 is  Using £ = 1-4, the delay of the modified Farrow structure of
0.02 and 1, respectively. Fig.7 in transparency 18 becom&= N/2 -1 +A, where
N/2-1 is an integer delay and is a fractional delay with
O0sA<1l
* In this case, instead &, —1, 1-24is used
E « For this structure, the transfer function is espilele as
é N/2-1| M m
HW,zA)= Y | Yc,(kt-21] |z V=
| | k=0 | m=0 (21)
N/2-1| M m
o | + {Z(—l)"“cm(k)[l—ﬂ] }z*“”‘l‘”
% o5 1 ‘ 2 25 3 35 4 k=0 | m=0

1.
Frequency irFm

where W denotes adjustable parameteggk) for k=0,1,-- -,

N/2-1 andm=0,1, ---M.

_ o8  Using a nonlinear optimization procedure, followipgpb-
500 lem can be solved: GivaM, M, &, and the passband region
g Q,=[0, w)], w,< T find W to minimize
o 0.4+
Boa A, = max max —argH(lP,ej‘",)l)/a)—(N/2—1+/l)} (22a)
E 0=A<1] wQ,

0 subject to

TS 2 o1 2 3 a4
Time |nTm
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A, = max‘[max H(Lp,ejw,/,)_l}sga_ (22b) Example: @, = 0.75m N = 10.M = 4, and & = 0.01.
0sA<y wbQ, 4,=0.0016.

* Due to that fact that both the amplitude and plueday er-
rors in the passband are the sameM@nd 1-A, Figs. (c)
and (d) show the phase delay and amplitude respardg
forA=0, 0.1, 0.2, 0.3, 0.4, and 0.5.

o Passband amplitude
i 101

¢

Impu
e
[
Amplitudetude in dB
8 38 8 &

(@)

Phase Delay Respt
[
de R

0 o1 02z 03 04 05 06 07 08 09 1 Ofn 02n Osn 04n Obn 06 O7n Ofn 08n
‘Angular Frequency w/ 1t Angular Frequency /1t
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Application B: Up-Sampling Between Arbitrary
Sampling Frequencies

» The Farrow structure can be directly used for ptimg the
increse between an arbitrary inmatmplingrateF;, and an
arbitrary output sampling rat&.

e It is desired thatH,(j2mf) approximates unity for
0=<f<0.45~, with tolerance of 0.001 and zero foe 0.5F;,
with tolerance of 0.00001 (100-dB attenuation).

* When using the minimax optimization, the given enid
are met byN =92 andM =6, as shown on Page 32. This
implementation requiregfixed branch filters of lengtB2.

e The implementation can be simplified using fixedehr-
phase FIR interpolators before the Farrow structasepro-
posed by Saraméaki and Ritoniemi.

* N=4 and M =3 are required if the sampling rate is in-
creased by a factor of six by using a two-stagedfinter-
polator with interpolation factors of two and thraed FIR
filters of order 183 and 11, respectively. See Pslge

e The block diagram for this multistage implementatis
shown below.

x(n) Modified |
0 2 e 2Fy 2) |l § 3 fo{ 3Fate) ] Farrow . 20w
Fin 2Fin 6Fin | structure | Fout

 Note that the same structure can be used foFapy Fi,.
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Design with fixed interpolators before the Farrow
structure: Simultaneous optimization has been used.

Solid: 1st interpolator, Dashed: 2nd interpolator, Dot-dashed: Farrow
T T T T T T T T T

O

|

a

=)
T

Amplitude in dB
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-150

0
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1.001 T T T

1.0005

1

!
a
=]

0.9995

0.999

1 . . 1 . I
0 005 01 015 02 025 0.3 035 04 045
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-100 -
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Direct Design
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0"‘ Passband Amplitude Response 7
1.001 T T T T T T
1.0005
g 1
P 0.9995 1
3 0.999 \ . | \ . ,
2 0 0.05 0.1 015 0.2 025 0.3 0.35 04 045
a
g
< _100
_150 LT 0 |
0 2 4 6 8 10 12 14 16 18 20

Frequency f/ F
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Application D: Down-Sampling Between Arbitrary
Sampling Frequencies: First Alternative

36

» There exist two alternatives to perform down-sangpli

» The first alternative is to increase the sampliate to a
multiple of the output sampling rate and then toimhate to
the desired output sampling rate.

* As an example, consider sampling rate reductiomfro
48 kHz to 44.1 kHz using the a structure shownwelo

X(n) | Modified
$—)> Farrow > Fl(Z) -1 ‘2 > Fl(Z) = ‘2 _y_(l_)>
Fin | structure | 4Fout 2Fout Fout

» The passband edge is 20 kHz and aliasing is alldnted
the band between 20 kHz and 44.1/2 kHz.

* The passband ripple is 0.0001 and the minimum stoghb
attenuation is 120 dB.

» To meet these criteridl = 4 andN = 6 are required by the
modified Farrow structure, whereas the orders ef fifst
and second decimator are 4 and 126, respectively.

* The resulting responses are shown on the next page.
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Three -stage Decimator using the Modified Farrow

structure: Simultaneous optimization has been used.
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Transposed Modified Farrow structure

24-1
X(k) \l’ 4\1’
Fi X >®
69] + S
1&D
7 l;z]
Y Y o
Fou| Vo) v o vu(n,1)
>—
&(0) c(0) c(0)
2, &
@
(1) o) (D)
| P | ) Ji\
G(N -1) c(N-1) (N -1) y()

Fig.10. Transposed modified Farrow structure.
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Application D: Down-Sampling Between Arbitrary
Sampling Frequencies: Second Alternative

* The second alternative is to use the transposed modi-
fied Farrow structure together with fixed decimators.

» The direct transposed modified Farrow structure is
shown in the next transparency.

* Due to the lack of time, this alternative is not consid-
ered in details in this talk.

« For more information see

D. Babic, J. Vesma, T. Saraméki, and M. Renfors,
“Implementation of the transposed Farrow structure,” in
Proc. 2002 IEEE Int. Symp. Circuits and Systems
Scotsdale, Arizona, USA, 2002, vol. 4, pp84

D. Babic, T. Saraméki and M. Renfors, “Conversion be-
tween arbitrary sampling frequencies using polynomial-
based interpolation filters,” ifProc. Int. Workshop on
Spectral Methods and Multirate Signal Processing,
SMMSP’02 Toulouse, France, September 2002, pp.
57-64
« The main advantage of this structure is that the same
structure can be used for any input sampling Fate
I:out-
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Application D: Continuous-Time Signal Processing
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« The Farrow structure can be easily generalized to
process digitally the reconstructed sigyél).

* These applications include, among others, determin-
ing the derivative or the integral wf(t).

» The derivative is widely utilized, for example, in find-
ing the location of the maximum or minimum of the
signal.

« The integral can be used to calculate the energy of the
signal over the given time interval.

* We concentrate on determining the derivativg.().
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Generalized Farrow Structure for Determining the
Derivative of y,(t)

¢ In the intervaln T, <t<(n+1)T;, for n=0, 1, 2,y,(t) can
be expressed as

M
T, = PLA) = D vp(M[2p-1]",  (23)
m=0

Ya(t)

where thevy(n)’'s are the output samples of the FIR
branch filters in the modified Farrow structure.

e The derivative of/,(t) in the intervals is thus given by

dya(t)‘t

dt AP Sy (myamop -1 (24)

=Ty T

m=0

e The derivative ofy,(t) att =(n+)T;, can be determined
by multiplying thevy(n)’s by 2m(2u-1)"", instead of
(2u—-1) "in the modified Farrow structure.

« For estimating the derivative, it is desired thi{j27f)
approximatesl/(27£) in the passband with the weighting
equal to2 4.

« In the stopband, it is desired to approximate xgth a
constant weight.
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Continuous-time processing of an ECG signal

Amplitude

Amplitude

Amplitude

0 01 02 03 04 05 06 07 08 09 1
Timet/s

Fig.11. Continuous-time processing of an ECG signal. (a) Discrete-

time ECG signal. (b) Interpolated continuous-time signal. (c) Con-
tinuous-time derivative.
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Example on the Derivative Approximation

* It is desired to estimate the continuous-time derivative
of a discrete-time ECG signal shown in Fig. 11(a).

* Figures 11(b) and 11(c) show the continuous-time in-
terpolated signal and the derivative signal, respec-
tively.

« For hy(t) used for determining the derivative signal,
N=8, M=5, and the passband and stopband edges are
located at 0.35; and 0.6%, respectively.

« When using the minimax optimization criterion with
weigting equal to 0.035 in the passband and equal to
unity in the stopband, we end up wil(t) with the
amplitude and impulse responses shown in Fig. 12.
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Characteristics of the differentiator

Impulse response for dh(t)/dt

Amplitude

Amplitude

0 05 1 15 2
Frequency f/ Fm

(b)
Fig.12. Optimized differentiator. (a) Impulse response. (b) Ampli-
tude response
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Application C: Symbol Synchronization in Digital
Receivers

r® rn) Matched filte X(n) Inter| y0) all)
polator .
—>ADC{—> hyn) (k) Decision|——»
n H
szln—m
Timing

estimatior

Fig. 13. Digital receiver with non-synchronized sampling.

» The sampling of the received signal is performed iixed
sampling clock, and thus, sampling is not syncleeahito
the received symbols.
= timing adjustment must be done by digital methdtr a

sampling.

« Can be done by using interpolation filter.

» Advantages of nonsynchronized sampling:

—separates the analog and digital parts

—easy to change the sampling rate

—sampling frequency does not have to be a multiple o
the symbol frequency (only high enough to avoid
aliasing)

—no need for complex PLL circuit.
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» Two polynomial-based interpolators have been design
the minimax sense to illustrate the use of the abov
mentioned specifications.

« It is assumed that the received signal has a raissthe
pulse shape with the excess bandwidtheef.15 and the
oversampling ratio iR=1.75.

* The passhand edge for both filters fis fFi,=23/7CF,
(=0.3F;)

» Furthermore, it is required that the passbanddish is
less thand,=0.01 and the minimum stopband attenuation is
A=50dB.

* The first filter has a uniform stopband .In ordemteet the
specifications,N=8 and M=3 are required, as shown in
Figure 21(a) on the next page

» The second filter has a non-uniform stopband asrgby
Eqg. (31b) and the spectrum of the raised cosingepsihape
is used as a weighting function. In this chkse6 andM =3
meets the requirements givikg=50.0dB and3,=0.01, as
shown in Figure 21(b) on the next page.
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Practical Case

» When deriving the frequency-domain specificatiomsthe
anti-imaging filterh,(t), it is assumed that
1) The pulse shape of the transmitted signal hagxicess
bandwidth ofa and the ratio between the sampling rate
Fin and the symbol rate R
2) In order to avoid aliasing, it is required tRat(1+a).

» Based on these assumptions, the input signal ahtbgo-
lator x(n) contains the desired component in the frequency
range [0,8F], where 8=(1+a)/R/2 and undesired images
in the bands K-B)Fin, (k+HF;.] for k=1, 2,---.

 Therefore, the desired function fidg(j27f) is specified by

1/F, forO< f < BF,

(25)
0 for f O0Q,,

D(f):{

where the stopband region, denotedXyycan be selected as

0, =[a- AF,,«) (263)
or
0, =Ulk-AF,. (k+ AF,] (260)
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Fig. 14. The magnitude response of the interpolation filter (solid
line), the spectrum for the raised cosine pulse (dashed line)dn
for the reconstructed signaly,(t) (dark area). (a)With uniform
stopband. (b) With non-uniform stopbands having the raised
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Properties of Minimax Case A designs

Case A: The minimum even valueNfcan be estimated by

- 20log,,(,/3,0,) - 84

- 76(f, - f,)/F,

@7)

where g, and & are the maximum deviations of the amplitude
response from unity fof0[0,f] and the maximum deviation
from zero forf O fs, o).

Here,[x]| stands for the smallest integer that is largeearal
toXx.

It has been observed that in most cases the atstiraagion
formula is rather accurate with only a 2 % error.

The next problem is to find the minimum valueMfto meet
the criteria.

To illustrate this the following specifications arensidered:
Specificationsl: The passband and stopband edges are at
f,=0.25, and aff;=0.75F,.

Specification®: The passband and stopband edges are at
f,=0.25, and affs=0.5,.

Specifications3: The passband and stopband edges are at
f,=0.37%, and aff;=0.675,.

Specificationg}: The passband and stopband edges are at
f,=0.37%F, and atfs=0.5F,.

Tapio Saramaki
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Specifications 1 and 2:
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Properties of Minimax Case A designs
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« In each case, several filters have been designgtkimini-
max sense with the passband weighting equal ty @it
stopband weightings ofW,=1, W,=10, W;=100, and
W,=1000.

* M, the degree of the polynomial in each subintervaties
from 0 to 12N, the number of intervals varies from 2 to the
smallest integer for which the stopband rippletfa ampli-
tude response is less than or equal to 0.0001 ¢B)Cfor
W,=1.

* For Specifications 1, 2, 3, and 4,, the correspumndimall-
est values oN are 12, 24, 24, and 48, respectively. Recall
thatN is an even integer.

« The following two pages give the results for Case A

» For other cased\ is either the same or should be incrased
by two.

* For Case C the passband and stopband edges satisfy
f,=A-p)F, 12, f,=Q+p)F, /2.
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Specifications 3 and 4:
Specifications 3:N=2, 4,---, 24

52

H
® 9
3 8
T
i
S
3

[ w=10
s

=
3
T
®
3

N
S
T
IS
S

Stopband Attenuation in d
8

Stopband Attenuation in dB
=Y
3

)

N
S

. . . .
4 6 8 10 I
Degree M

o
~
Y
o
N
IS
@
oL
=
1S
-
Y

Degree M

e
Y]
S
T
=
)
S

[ w_=1000
s

»—\
S
3

®
3

@
2

Stopband Attenuation in dB
8
Stopband Attenuation in dB

2 4 6 8 10 12

Degree M

Specifications 4:N=2, 4,---, 48

Degree M

100

c c
S S 100|
® sof Wt é £ wewo i
2 2 ’
2 eof g for
g g y.
2w R
8 B
E- 20+ .8 40 g
2] [5] : =
o L 20¢
4 6 8 10 12 ] 2 4 6 10 12
Degree M Degree M
g 120F F===== < T
I
g w_=100 4 T 1201 w_=1000 =
S100F ° = 3 s
2 2
2 £ 100}
< g0 y < /&
° o
g Y. H J=
8 eof g eof 4=
2 $ S 3
D 4o S==S=S== @ SO.J SEESSS]
0o 2 10 12 0 2 4 6 8 10 12

Degree M



Tapio Saramaki Tapio SBAmaki
Tampere University of Technology Tampere University of Technology

54

Case A: £=0.62%, . f,=0.37F;, , §,=0.01, Case B: £=0.62%, ,f, =0.37%F;, , 4,=0.01,
d. =0.001:N=12; Minimax (solid line): M= 4; Least- d. =0.001:N=12; Minimax (solid line): M= 4; Least-

squared (dashed line)M=5 squared (dashed line)M=5
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Case C: {=0.62%, ., f{,=0.37F;, , 4,=0.01, Case D: {=0.62%, . f,=0.37%F;, , 4,=0.01,
d.=0.001:N=14; Minimax (solid line): M= 5; Least- d.=0.001:N=12; Minimax (solid line): M= 5; Least-

squared (dashed line)M=5 squared (dashed line)M=5
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Conclusion

» An efficient approach has been described for imtetphg
new sample values between the existing discrete-tiam-
ples.

* This approach has the following advantages:

» Design directly in the frequency domain is stréigh
forward.

* The overall system has an efficient implementation
form.

» The analysis of the system performance is easy.

» There exist several DSP applications.
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